University of Kabianga Repository

Spatio-Temporal Variation of HIV Infection in Kenya

Show simple item record

dc.contributor.author Tonui, Benard
dc.contributor.author Mwalili, Samuel
dc.contributor.author Wanjoya, Anthony
dc.date.accessioned 2024-10-25T08:42:41Z
dc.date.available 2024-10-25T08:42:41Z
dc.date.issued 2018-09-27
dc.identifier.citation : Tonui, B., Mwalili, S. and Wanjoya, A. (2018) Spatio-Temporal Variation of HIV Infection in Kenya. Open Journal of Statistics, 8, 811-830 en_US
dc.identifier.issn 2161-7198
dc.identifier.uri http://ir-library.kabianga.ac.ke/handle/123456789/934
dc.description Article Research on Spatio-Temporal Variation of HIV Infection in Kenya en_US
dc.description.abstract Disease mapping is the study of the distribution of disease relative risks or rates in space and time, and normally uses generalized linear mixed models (GLMMs) which includes fixed effects and spatial, temporal, and spatio-temporal random effects. Model fitting and statistical inference are commonly accomplished through the empirical Bayes (EB) and fully Bayes (FB) approaches. The EB approach usually relies on the penalized quasi-likelihood (PQL), while the FB approach, which has increasingly become more popular in the recent past, usually uses Markov chain Monte Carlo (McMC) techniques. However, there are many challenges in conventional use of posterior sampling via McMC for inference. This includes the need to evaluate convergence of posterior samples, which often requires extensive simulation and can be very time consuming. Spatio-temporal models used in disease mapping are often very complex and McMC methods may lead to large Monte Carlo errors if the dimension of the data at hand is large. To address these challenges, a new strategy based on integrated nested Laplace approximations (INLA) has recently been recently developed as a promising alternative to the McMC. This technique is now becoming more popular in disease mapping because of its ability to fit fairly complex space-time models much more quickly than the McMC. In this paper, we show how to fit different spatio-temporal models for disease mapping with INLA using the Leroux CAR prior for the spatial component, and we compare it with McMC using Kenya HIV incidence data during the period 2013-2016. en_US
dc.language.iso en en_US
dc.publisher Open Journal of Statistics en_US
dc.subject HIV en_US
dc.subject INLA en_US
dc.subject McMC en_US
dc.subject Leroux CAR Prior en_US
dc.subject Disease Mapping en_US
dc.subject Spatio-Temporal Models en_US
dc.title Spatio-Temporal Variation of HIV Infection in Kenya en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account