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Abstract: The Navier-Stokes (N-S) equations for incompressible fluid flow comprise of a system of four nonlinear equations 

with five flow fields such as pressure P, density ρ and three velocity components u, v, and w. The system of equations is generally 

complex due to the fact that it is nonlinear and a mixture of the three classes of partial differential equations (PDEs) each with 

distinct solution methods. The N-S equations fully describe the unsteady fluid flow behaviour of laminar and turbulent types. 

Previous studies have shown existence of general solutions of fluid flow models but little has been done on numerical solution for 

velocity of flow in N-S equation of incompressible fluid flow by Crank-Nicolson implicit scheme. In practice, real fluid flows are 

compressible due to the inevitable variations in density caused by temperature changes and other physical factors. Numerical 

approximations of the general system of Navier-Stokes equations were made to develop numerical solution model for 

incompressible fluid flow. Adequate solutions of the latter produce numerical solutions applicable in numerical simulation of fluid 

flows useful in engineering and science. Non-dimensionalization of variables involved was done. Crank-Nicolson (C.N) implicit 

scheme was implemented to discretize partial derivatives and appropriate approximation made at the boundaries yielded a linear 

system of N-S equations model. The linear numerical system was then expressed in matrix form for computation of velocity field by 

Computational fluid dynamics (CFD) approach using MATLAB software. Numerical results for velocity field in two dimensional 

space, u(x,y,t) and v(x,y,t) generated in uniform 32×32 grids points of the square flow domains, 0≤x≤1.0 and 0≤y≤1.0 were 

presented in three dimensional figures. Results showed that the velocity in two dimensional space does not change suddenly for any 

change in spatial levels, x and y. Therefore, C-N implicit Scheme applied to solve the N-S equations for fluid flow is consistent. 
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1. Introduction 

The system of Navier-Stokes (N-S) equations for 

incompressible fluid flow fully describes the dynamics of 

Newtonian fluid. It is basically the statement of the principles 

of conservation of momentum of fluid flow in differential 

and integral forms. It is in essence the Newton’s Second law 

of motion of fluids as by a system on nonlinear PDEs. 

Conventionally, each of the three classes of second order PDE 

namely, elliptic, parabolic and hyperbolic have distinct 

numerical solution methods. The general form of N-S 

equation is a complex system due to the fact that it consists of 

nonlinear PDEs in 3D and a mixture of the three classes of 

second order PDEs. The unsteady viscous term renders them 

parabolic type, the diffusion term make them hyperbolic type 

and the source or sink of forces render them elliptic (Poisson’s 

equation). Pressure term coupled with velocity field for 

instance, is a function of space and time and determined as 

part of general solution of the incompressible momentum 

equation. The mass conservation equations can easily and 

readily be solved by any of the methods applicable to 

differential equations. Therefore, solution of the system of 

momentum conservation equations was the goal. 

 Numerical solutions for a desired fluid flow problem 

require modification of the general system, numerical 
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approximation and application of appropriate initial and 

boundary condition. This develops numerical solution model 

of flow fluid for simulation of variety of flow situations of the 

problem.  

No fluid can be considered perfectly incompressible even in 

carefully controlled flow situations since minute variations in 

density occur due to inevitable variations in temperature and 

many other factors [19]. However, the incompressible fluid 

flow model is accurate and necessary approximation in the 

sense that it contains certain distinctive mathematical and 

physical properties (eg. pressure, density, velocity) suitable 

and applicable for modeling a variety of flow situations that 

require special computational techniques. Taking heat 

conduction in the fluid flow to be constant, the following 

general form N-S equations can fully describe the motion of a 

viscous incompressible fluid flows in some bounded 

domain	Ωϵℛ�, n = 2,3. 

���
 = −∇P + ν∇�V + �V. ∇�V	in	Ω	∇. V = 0	in	Ω �							(1) 

Where, the three velocity components in Cartesian 

coordinates systemV = ���, �,��, gradient operator	∇= ���+�� + ��!	and the Laplace operator	∇�=
�"��" + �"� ". 

The Pressure gradients in the system provide the degree of 

freedom needed to ensure that the condition of continuity 

equation is satisfied by the flow velocity. Therefore, pressure 

field coupled with the equation of continuity is determined as 

part of the general solution of the momentum equation of the 

incompressible fluid flow [2]. 

Practically, lamina (smooth and orderly) flow if any occur 

only a small section of the flow domain of many boundary 

layer flows. Fluid flows past a surface exhibit considerable 

turbulence (disorderly flow) [16]. Reynolds number, Re being 

the ratio of inertial force to viscous force determines the nature 

of flow. Certain range of Re gives the transition from lamina to 

turbulent flow types. 

Generally, the solutions for a specific practical flow 

problem desired to model a flow phenomenon require rigorous, 

relevant or reasonable approximations of general system of 

fluid flow equations to arrive at flow models that satisfy the 

conditions of the desired flow situation.  

The solutions for Burger’s equation which is model of the 

incompressible N-S equation in 1D without equations of 

continuity and pressure functions using modified C-N scheme, 

showed consistency of the numerical solution method [7, 8, 

18]. Comparing the numerical results for the of the problem 

with those of pure C-N implicit scheme applying uniform grid 

with constant Re at 4000 and very small time stepping (∆t) at 

0.001 [8], showed better consistency and rate of convergence 

in the modified C-N scheme than pure C-N scheme. Though, 

the model problem did not focus on the principles of 

conservation.  

Linearization done for the Burger’s Equation by Newton’s 

Methods and numerical solution by Gauss’s elimination with 

partial pivoting achieved convergent numerical results of 

velocity field [18]. Similarly, results from the solutions for 

viscosity and velocity observed values close to those from 

exact solution were [7]. 

Numerical solution for time-dependent Navier-Stokes 

models in curvilinear coordinates with its three velocity and 

vorticity components discretized by second order central 

difference in space and third order semi-implicit Runge-Kutta 

in time produced highly efficient, accurate and consistent 

results [11]. 

The C-N implicit scheme combined with time efficient 

ADI combined using iterative methods produces even more 

efficient numerical solution model [15]. The central 

difference approximations of the C-N implicit scheme 

applied on initial value problems (IVP) of the quasi linear 

parabolic PDEs and hyperbolic PDEs produce more accurate 

numerical results than forward difference approximations 

with decreased steps sizes [4, 17]. 

Initial conditions and Von Neumann boundary conditions 

must be applied [8] to develop a complete and accurate 

numerical solution model. Neumann boundary conditions 

were preferably implemented in. Numerical solution of 

particularly the flow problem because it produces accurate 

and reliable numerical results [14]. 

Numerical solution for N-S equations with the Dirichlet 

boundary conditions exist in a continuous flow domain 

(well-posedness) and the solution converge to suitable weak 

solutions [5]. The Results for velocity-pressure solution 

solutions 	�%, &�	 for the 3D N-S equations in a bounded 

domain 	'∶=Ω × �0, *�	 proved possible extensions to 

numerical approximation by C-N schemes. But lack of 

regularity in	&	made it difficult to prove global existence of 

solutions. 

2. Incompressible Fluid Flow Fields 

Fluids in motion are deformed, translated from one position 

to another and rotated at different magnitude and direction 

during the flow. The nonlinear PDEs of fluid flow problem are 

arrived at by the coupling of the primitive variables involved 

in the practical flow situation. 

2.1. Velocity Gradient Tensor 

Viscous fluids flow is basically caused by resistance to 

shear stresses. The translational motion of the fluid elements 

produces velocity gradient tensor, a second order tensor, 

given as	3 × 3	obtained as follows. 

u + du = u + -�.�� dx + �.� dy + �.�! dz2v + dv = v + -�4�� dx + �4� dy + �4�! dz2w + dw = w + -�6�� dx + �6� dy + �6�! dz2789
8:

     (2) 

This becomes; 

	;dudvdw< = =>>
>?�.�� �.� �.�!�4�� �4� �4�!�6�� �6� �6�! @A

AAB ;dxdydz<           (3) 
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The diagonal elements in the velocity gradient tensor 

denote the rate at which the fluid flow may undergo viscous 

strain during flow while the off-diagonal components show 

changes in the position of fluid elements in the directions 

normal to the direction of flow velocity components (shear 

motions). The rate of deformation tensor is equal to the 

velocity gradients and its transpose [1]. 

In this case, the off-diagonal elements are symmetrical 

(equal) and decomposed as follows; 

�4�� = �.� = C� -�4�� + �.� 2 + C� -�.� − �4��2�6�� = �.�! = C� -�.�! + �6��2 + C� -�.�! − �6��2�6� = �4�! = C� -�4�! + �6� 2 + C� -�4�! − �6� 2789
8:	     (4) 

The extreme right parenthetical parts denote rotation of the 

fluid during flow with the angular velocity vector	ω. These 

produce vorticity due to Coriolis forces which in essence 

cause deflections on the fluid elements in the direction 

normal to the direction of entire fluid flow. They yield pure 

shear, rotation or even a combination of both depending on 

the flow situation. 

Therefore, the fluid in motion possesses four physical 

features of flow velocity namely: pure translation, vorticity, 

dilation (or contraction) and symmetric rate-of-shear tensor. 

Translation is specified by velocity components, (u, v, w) in 

some time t while the rate of circulation which gives vorticity 

specified by twice angular velocity 

components	ω�, 	ω 	and	ω!	given by; 

ω� = �6� + �4�!ωE = �6� + �4�!ωF = �.� + �4��789
8:

               (5) 

This results in viscous stress which is linearly proportional 

to (twice) the strain rate and vorticity,	ζ	is twice the angular 

velocity	ω	[3]. The rate of strain of fluid flowing is therefore 

a second order tensor. 

The	3 × 3	matrix can further be expanded as follows. 

=>>
>?�.�� �.� �.�!�4�� �4� �4�!�6�� �6� �6�! @A

AA
B =

=>>
>? �.�� C� -�.� + �4��2 − ωF C� -�.�! + �6��2 + ωEC� -�4�� + �.� 2 + ωF �4� C� -�4�! + �6� 2 − ω�C� -�6�� + �.�!2 − ωE C� -�6� + �4�!2 + ω� �6�! @AA

AB
 (6) 

The Superposition of the four features of fluid flow, one or 

more of which may be zero at any point of the flow 

determine the fluid flow behavior. 

Equation (6) can be decomposed further to obtain the sum 

of the rate -of-strain tensor (symmetric) and the rotation 

tensor (skew-symmetric) as follows. 

=>>
>?�.�� �.� �.�!�4�� �4� �4�!�6�� �6� �6�! @A

AAB =
=>
>>
? �.�� C� -�.� + �4��2 C� -�.�! + �6��2C� -�4�� + �.� 2 �4� C� -�4�! + �6� 2C� -�6�� + �.�!2 C� -�6� + �4�!2 �6�! @A

AA
B +

H 0 −ωI ωJω! 0 −ωx−ωJ ωx 0 K	                (7) 

2.2. Inertial Force on the Fluid Flow 

For a fixed control volume (constant unit dimensions) of 

incompressible fluid undergoing translational motion in 

equation (2), the control mass is constant during flow since 

there is neither source nor sink of mass during the flow. The 

respective transition of mass flux components in the x, y and 

z directions during fluid flow in equation (5) is given by; 

�ρu�dydz 
MN�OPN
Q	
RSTTTTTTTU	-ρu + �V.�� dx2 dydz�ρv�dxdz 
MN�OPN
Q	
RSTTTTTTTU	-ρv + �V4� dy2 dxdz�ρw�dxdy 
MN�OPN
Q	
RSTTTTTTTU	-ρw + �V6�! dz2 dxdy789
8:

      (8) 

The change in mass of the fluid in the control volume in 

motion during flow in the direction of x parallel to the dxdy 

plane, for instance, is given by; 

-ρu + �V.�� 2 dxdydz − �ρu�dxdydz = �V.�� dxdydz  (9) 

Therefore, total change in mass flux of fluid flow through 

the control volume is zero. There is neither sink nor source of 

mass during the flow of incompressible fluid. Therefore, the 

change in mass is given by; 

-�V.�� + �V4� + �V6�! 2 dxdydz = 0           (10) 

The unsteady change in mass flux in each of the 

corresponding component direction during the fluid flow is 

due to dilation or contraction of the fluid. This is in essence 

material derivatives (derivatives of mass flux by chain rule) 

of mass flux in each component directions. They are given 

as; 

�V�
 + ρ-�.�� + �.� + �.�!2 = 	 �V�
 + ∇ρ. u = 0�V�
 + ρ-�4�� + �4� + �4�!2 = 	 �V�
 + ∇ρ. v = 0	�V�
 + ρ-�6�� + �6� + �6�!2 = �V�
 + ∇ρ.w = 0789
8:

     (11) 

The equation for steady incompressible fluid flow,	-�V�
2 =0	when	ρ	is constant, is the divergence-free in the velocity 

vector fields given by: 

∇. V = �.�� + �4� + �6�! = 0             (12) 

This yields the equation of continuity of flow.  

Similarly, the change in momentum fluxes in x, y and z 

directions during translational motion given by; 
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�ρu�udydz 
MN�OPN
WR�STTTTTTTU -u + �.�� dx2 Xρu + �V.�� dxY dydz�ρv�vdxdz 
MN�OPN
WR�STTTTTTTU -v + �4� dy2 Xρv + �V4� dyY dxdz�ρw�wdxdy 
MN�OPN
WR�STTTTTTTU -w + �6�! dz2 Xρw + �V.�! dzY dxdy		 788
98
8:

 (13) 

The change in momentum of the fluid in the x direction 

parallel to the dxdy plane of control volume is given by: 

uρudxdydz − Xρu �.�� + �V.�� dxYdydz 

= ρ -u �.�� + v �.� + w �.�!2 dxdzdy               (14) 

Similar expressions for changes can be obtained for 

pressure gradient and the viscous stress components [10]. 

The change momenta of fluid flow along the directions 

of	x, y	and	z	past their respective orthogonal planes of the 

control volume become; 

	ρ -u �.�� + v �.� + w �.�!2	ρ -u �4�� + v �4� + w �4�!2	ρ -u �6�� + v �6� +w �6�!2789
8:

              (15) 

Therefore, the respective rate of change in momenta of the 

fluid flow after a time	t	gives the respective acceleration field, 

a of the flow. They comprise of the steady and advection 

terms denoting the inertial effect in the fluid flow equation. 

They are obtained by material derivatives of the momentum 

flux components given by; 

a� :	�.�
 + u �.�� + v �.� + w �.�! =	\.\
a :	�4�
 + u �4�� + v �4� +w �4�! =	\4\
	a! :	�6�
 + u �6�� + v �6� + w �6�! =	\6\
789
8:

        (16) 

The system yields momentum equations which basically 

signify the inertial forces per unit area on control surface. 

The corresponding components give the inertial forces when 

multiplied by density (mass per unit volume) given as; 

F = 	ma =
_8̀
8a ρ \.\
 = �V.�
 + ∇�ρu�. Vρ \4\
 = �V4�
 + ∇�ρv�. Vρ \6\
 = �V6�
 + ∇�ρw�. V          (17) 

2.3. Viscous Forces and Dynamical Balances 

The vorticity term described in equation (5) produces 

considerable viscous effects (forces) due to fluid strain and 

circulation. The result is a second order tensor (specified by 

surfaces and forces), viscous stress tensor	b	given by; 

;	b	�� 	b	� 	b	�!	b	 � 	b	  	b	 !	b	!� 	b	! 	b	!!<              (18) 

The off-diagonal components are viscous stresses are 

responsible for expansion (or contraction) the fluid during 

flow whi le the diagonal components are normal 

stresses	c	that act perpendicular to the surface of flow hence 

related to mechanical pressure,	d. 

The respective components of viscous stress tensor,	b	of 

fluid flux through the orthogonal plane parallel to the x, y 

and z directions are given by; 

�ef�� = �eff�� + �efg� + �efh�!�eg� = �egf�� + �egg� + �egh�!�eh�! = �ehf�� + �ehg� + �ehh�! 789
8:

            (19) 

For incompressible fluid, the normal stresses,	c	on control 

surfaces are isotropic (equal independent of direction),	σ� =σ = σ!	and each is given by: 

	σ� =	τ�� − Pσ = τ  − Pσ! = τ!! − Pk                (20) 

In particular, viscous stress of fluid flux normal to 

the	x	direction through the orthogonal plane parallel to the xz 

plane	σ�	for instance, is given by; 

σ� = _̀
a −P� +	τ�	−P� + 2μ �.�� + η-�.�� + �4�� + �6�!2−P� + 2μ �.�� + η∇. V	         (21) 

Where,	μ	is coefficient of dynamic viscosity and	η	is the 

coefficient of elastic viscosity of the fluid in motion.  

This produces normal force on the control surface when 

multiplied by the control surface area of the corresponding 

orthogonal plane. Thus, the corresponding normal surface 

forces exerted on the control surfaces of the fluid in 

the	x, yand	z	directions are given by; 

�n�� = − �o�� + ��� -2μ �.�� + η∇. V2�n�� = − �o� + �� -2μ �.�� + η∇. V2
�n�� = − �o�! + ��! -2μ �.�� + η∇. V2789

8:
         (22) 

The average of the equal normal stresses for a continuous 

flow of incompressible fluid is given by; 

nfp	ngp	nhq = �rpqsq -�.�� + �4�� + �6�!2 − P										(23) 

The equation of continuity for incompressible fluid 

obtained in (12) due to pressure effects implies that the 

average normal viscous stress is equal to negative pressure.  

It then follows that the Stokes hypothesis condition of 

Newton’s viscosity assumption for Newtonian fluid holds 

[12]. This is given by; 

	�rpqsq = 0	or	η = − �q μ k                  (24) 
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Similarly, the symmetrical shear stresses in (2.8) are given 

as follows. τ� = τ �τ ! = τ! τ�! = τ!�v                 (25) 

They are directly opposite off-diagonal components (shear 

stress) which act to deform the fluid diagonally (shear strain). 

They yield corresponding viscous forces in the fluid in 

motion given by; 

	b	� = 	b	 � = μ ��� -�.� + �4��2	b	 ! = 	b	! = μ �� -�4�! + �.� 2	b	�! = 	b	!� = μ ��! -�.�! + �6��2789
8:

        (26) 

Viscous fluid flows at high Reynolds numbers	Re	(the ratio 

of inertial force to viscous force) depicts quick variation of 

vertical velocity u(y) (velocity varying with depth y from 

solid surface). The stress tensor, maps linearly the surface 

force on the surface of the deformable continuum to the unit 

normal on the surface.  

Therefore, the resultant of viscous (surface) forces is the 

algebraic sum of forces due to the normal and shear stresses 

given by; 

dFO� = − �o�� + ��� -η∇. V + 2μ �.��2+ �� -μ X�.� + �4��Y2 + ��! -μ X�6�� + �.�!Y2dFO = − �o� + ��� -μ X�.� + �4��Y2+ �� -η∇. V + 2μ �.� 2 + ��! -μ X�6� + �4�!Y2dFO! = − �o�! + ��� -μ X�.�! + �6�� Y2+ �� -μ X�4�! + �.� Y2 + ��! -η∇. V + 2μ �6��2788
889
888
8:

     (27) 

Thus, the total surface force due to the normal and shear 

stresses shown in the system of equations (27) is given by; dFO = dFO�i + dFO j + dFO!k          (28) 

3. Methodology 

The procedures incurred solution of the problem were as 

follows. 

3.1. Formulation of Conservative Fluid Flow Equations 

The conservative system of Navier- Stokes equations for 

incompressible fluid flow constitutes system of fluid 

equations that satisfy the conservation principles such of 

mass and momentum during fluid flow. 

The significant viscous forces together with body forces 

cause imbalance between forces in the fluid resulting fluid 

motion (inertial effects). Dynamical balance exist when the 

net force due to algebraic sum of viscous forces is equal to 

inertial force (acceleration of the fluid). This is the Newton’s 

law of motion of the fluid [6]. 

This is given by a system of flow equations in 3D as 

follows; 

�V.�
 + �V."�� + �V.4� + �V.6�!= − �o�� + ��� -η∇. V + 2μ �.��2+ �� -μ X�4�� + �.� Y2 + ��! -μ X�6�� + �.�!Y2 + ρg
�V4�
 + �V4.�� + �V4"� + �V46�!= − �o� + ��� -μ X�.� + �4��Y2+ �� -η∇. V + 2μ �.� 2 + ��! -μ X�6� + �4�!Y2 + ρg
�V6�
 + �V6.�� + �V64� + �V6"�!= − �o�! + ��� -μ X�.�! + �6�� Y2+ �� -μ X�4�! + �.� Y2 + ��! -η∇. V + 2μ �6��2 + ρg			 78

88
88
88
9
88
88
88
8:

 (30) 

Boussinessq approximation implemented accordingly 

develops the desired flow model without necessarily changing 

the conservation laws [3]. The density is treated as constant 

except in the gravity term of body force. The Reynolds 

number	Re	becomes the key parameter that determines the 

nature of the flow. 

3.2. Coriolis Effects and Dynamical Balance 

The Coriolis force due to rotation of the fully immersed 

sphere in the direction of flow velocity deflects the fluid in the 

direction perpendicular to the direction of rotation. This yields 

angular acceleration. 

Necessary approximation is achieved by assuming 

geostrophic balance; a balance between Coriolis forces and 

the pressure gradient 

The momentum conservation equations for the boundary 

layer of fluid flow past a rotating earth forms the following 

system of 2D equation of fluid motion. 

���
 + ��|�� + v ��� = − CV �d�� + ν -�"���" + �"�� "2���
 + u ����+ ��|� = − CV �d� + ν -�	"���" + �"�� "2}    (33) 

Where,	ν = rV	is the kinetic viscosity. 

With the addition of the continuity equation, this system of 

equation comprise of three equations with three dependent 

variables, u, v and P. 

3.3. Conservative Fluid Flow Equations 

Conservative systems of Navier-Stokes equations of 

incompressible fluid flow are basically the statements of 

principles of conservation of mass and momentum of fluids 

in integrals forms and converting into differential forms. 

By Gauss’s divergence theorem, the volume integral of the 

divergence of mass flux,	ρu	equals the surface integral of the 

mass flux normal to control surface [6]. This is given by; 
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	~ ∇. ρu	dV� = −~ �ρu�u� . n. dA      (34) 

where, the minus sign indicates that	�	is an outward normal 

and 

~ X�V.�
 + ∇. ρuY 	dV =	� ~ S�u, t�dV� 	     (35) 

where, 	S�u, t�	 is the algebraic sum (sources or sinks) of 

forces that produce inertial force. 

The fluids circulating at a velocity	u	about the curve C of 

the rotating sphere is such that the rate of fluid circulation 

provide vorticity which is twice the angular velocity	 �= curl�	�3�.	Thus, the momentum conservation equation 

in x direction in equation (29) becomes, 

�V.�
 + ∇�ρu × u� = −∇. P� + μ∇�u + ρg�ρ �.�
 + u�∇ρ. u� + 	ρu�∇. u� + ρ�u. ∇�u= −∇. P� + ρg� + μ∇�u 79
:

      (36) 

Where, the conservation of mass equation is given by; 

	u�∇ρ. u� + 	ρu�∇. u� = 0�∇ρ. u� + 	ρ�∇. u� = 0 �           (37) 

The conservative equation of motion is given by; 

ρ �.�
 + ρ�u. ∇�u = −∇. P + μ∇�u + ρg	    (38) 

Where, the	u = u�x, y, z�	is the velocity component in x 

direction.	 
Pressure field in the entire flow domain adjust 

instantaneously to the velocity perturbations during 

circulation. It results from effects of normal viscous stresses 

in the momentum conservation equations. The divergence of 

the velocity field deviates from zero when the fluids circulate 

around a curved surface. 

Pressure distribution is altered by the net force due to 

horizontally rotating sphere. Large pressure difference at this 

point produces vorticity of the fluid. This phenomenon is 

increased as Re increases causing significant shear stresses 

within the boundary layers. The momentum conservation 

equations for fluid flow were approximated to the following 

system of 2D equations of fluid flow.  

���
 + ��|�� + � ��� = − CV ���� + � -�"���" + �"��E"2���
 + % ���� + ��|� = − CV ��� + � -�"���" + �"��E"2}        (39) 

This shows that the momentum fluxes are caused by the 

pressure gradients and viscous effects. 

4. Numerical Solutions 

The following approaches were applied in numerical 

solution of the flow problem. 

4.1. Linearization 

The dependent and independent variables in the 

incompressible Navier-Stokes equations governing the flow 

problem were non-dimensionalized then normalized to order 

of unity using the corresponding scaling variables. Pressure 

gradients were scaled with density and velocity. The variables 

and parameters occurring in the flow equations were scaled 

using the following scales: 

	T = t tR� , uM = u U�� , u� = v V�� , P = p ρU���X = r L� , Y = θ L� , 	ρ� = ρ ρ�� μ� = μ μ��ρ� = ρ�μ� = μ� 	= νν = μ� ρ�� = r�V���� = C�Q 788
9
88:

   (40) 

Where,	ρ	and	μ	are constants. 

The conservative boundary layer equation for fluid flow 

past a rotating sphere in 2D was then scaled as follows; 

���� + ���� = 0���  + U ���� + V ���� = − �o�� + C�Q -�"���" + �"���"2	���  + U ���� + V ���� = �o�� + C�Q -�"���" + �"���"2 789
8:

    (41) 

The system of nonlinear equation (41) is discretized by 

Crank-Nicolson finite difference scheme to produce a system 

of linear algebraic equations [4]. The resulting system 

algebraic of equations is given as follows. 

4.1.1. Equation of Conservation of Mass UWpC,¡�pC − UW¢C¡�pC + UWpC,¡� − UW¢C,¡�2∆X + 

�£,¤¥¦§¥¦ ¢�£,¤¨¦§¥¦ p�£,¤¥¦§ ¢�£,¤¨¦§
�∆� = 0         (42) 

4.1.2. Equation of Conservation of Momentum 

©�£¥¦,¤§¥¦ ¢�£¥¦,¤§∆  ª + UWpC,¡�pC ©�£¥¦,¤§¥¦ ¢�£¨¦,¤§¥¦�∆� ª +
UW¢C,¡� -�£¥¦,¤§ ¢�£¨¦,¤§�∆� 2 + VW,¡pC�pC ©�£,¤¥¦§¥¦ ¢�£,¤¨¦§¥¦�∆� ª

+VW,¡¢C� -�£,¤¥¦§ ¢�£,¤¨¦§�∆� 2
= C��Q∆�" «UW¢C,¡�pC − 	2UW,¡�pC + UWpC,¡�pC+	UW¢C,¡� − 	2UW,¡� + UWpC,¡� ¬ +
+ C��Q∆�" «UW,¡¢C�pC − 	2UW,¡�pC + UW,¡pC�pC+	UW,¡¢C� − 	2UW,¡� + UW,¡pC� ¬
©�£,¤¥¦§¥" ¢�£,¤¥¦§¥¦∆  ª + UWpC,¡�p� ©�£¥¦,¤§¥"¢�£¨¦,¤§¥"�∆� ª

+UW¢C,¡�pC ©�£¥¦,¤§¥¦¢�£¨¦¤§¥¦�∆� ª + VW,¡pC�p� ©�£,¤¥¦§¥"¢�£,¤¨¦§¥"�∆� ª
+VW,¡¢C�pC ©�£,¤¥¦§¥¦ ¢�£,¤¨¦§¥¦�∆� ª

= C��Q∆�" « VW¢C,¡�p� − 	2VW,¡�p� + VWpC,¡�p�+	VW¢C,¡�pC − 	2VW,¡�pC + UWpC,¡�pC¬ +
+ C��Q∆�" « VW,¡¢C�p� − 	2VW,¡�p� + VW,¡pC�p�+	VW,¡¢C�pC − 	2VW,¡�pC + VW,¡pC,�pC ¬	 78

888
888
888
9
888
888
888
8:

        (43) 
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4.2. Neumann Boundary Conditions 

The initial and boundary conditions 

for 	u�x, y, t�	 and 	v�x, y, t�	 were implemented numerical 

solutions [14]. The analytical solution the system of 

Navier-Stokes equations (39) at any point	�x, y, t�	is given by 

the following equations 

u�x, y, t� 	= 	 ¢� ¢�­Q¨"®"¯°± 	��²RO­�¢OW�	­��OW�	­ �
�Q�C��p� pQ¨"®"¯°± 	��²RO­�¢OW�	­��OW�	­ �	     (44) 

v�x, y, t� 	= 	 ¢��¢�­Q¨"®"¯°± 	��²RO­�¢OW�	­��OW�	­ �
�Q�C��p� pQ¨"®"¯°± 	��²RO­�¢OW�	­��OW�	­ �

    
(45) 

and so, 

�.�� =	 �
��Q�C��p� pQ¨"®"¯°± 	³�²RO­�¢OW�	­��OW�	­ ´��"    (46) 

Where, 	A = 2π�e¢"®"¯°± ³�sinπx + cos	πx� sin πy´ ×
¸Re¹100 + xy + e¢"®"¯°± ³�cosπx − sin	πx�sin	πy´»¼
−¹−2y − 2πe¢"®"¯°± 	³�cosπx − sin	πx� sin πy´» ×

�Re�y−πe¢"®"¯°± 	��sinπx + cos	πx�sin	πy��� 78
889
888
:
	(47) 

�.� =	 ½
��Q�C��p� pQ¨"®"¯°± ³�²RO­�¢OW�	­��OW�	­ ´��"	   (48) 

Where, 

	
B = −2 − 2π�e¢"®"¯°± ³�cos	πx − sinπx� cos πy´

¸Re¹100 + xy + e¢"®"¯°± ³�cosπx − sinπx�sinπy´»¼
−¹−2y − 2πe¢"®"¯°± 	³�cosπx − sin	πx� sin πy´»
�Re�x−πe¢"®"¯°± ��sinπx − cos	πx�cos	πy��� 788

89
888
:

 (49) 

�4�� 	= 	 ¿
��Q�C��p� pQ¨"®"¯°± 	³�²RO­�¢OW�	­��OW�	­ ´��"	    (50) 

Where, 

	

	C = −2 + 2π�e¢"®"¯°± ³�cos	πx + sinπx� sin πy´ ×
¸Re¹100 + xy + e¢"®"¯°± ³�cosπx − sinπx�sinπy´»¼
−¹−2x − 2πe¢"®"¯°± ³�cosπx − sin	πx�sinπy´» ×

�Re�x−πe¢"®"¯°± ��sinπx + cos	πx�cos	πy��� 78
889
888
:

 (51) 

And 

�4� 	= 	 \
��Q�C��p� pQ¨"®"¯°± 	³�²RO­�¢OW�	­��OW�	­ ´��"  (52) 

Where, 	D = −2 − 2π�e¢"®"¯°± ³�cosπx − sinπx� cos πy´
¸Re¹100 + xy + e¢"®"¯°± ³�cosπx − sinπx�sinπy´»¼
−¹−2x − 2πe¢"®"¯°± 	³�cosπx − sin	πx� sin πy´»
�Re�x−πe¢"®"¯°± 	��cosπx − sinπx�cosπy��� 78

88
9
888
:
	 (53) 

4.2.1. Numerical Solution Model 

Using forward finite difference to approximate equations 

(44-53) gives the following respectively. Neumann’s 

boundary conditions was used to 

approximate	UW±q,¡Ã 	and	UW,¡±qÃ 	 
At the 	x − axis and 	y − axis boundaries respectively 

produced:  

	�£,¤¥¦§ 	–	�£,¤§ 		Å = ½
��Q�C��p� pQ¨"®"¯°± 	³�²RO­�¢OW�	­��OW�	­ ´��"	 (54) 

 	�£¨",¤Æ 	–	�£¨Ç,¤Æ 		Å 	= 	π	e¢­	"	Ã	È	�0��£,¤¨"Æ 	–	�£,¤¨ÇÆ 	È 	= 	π	e¢­	"	Ã	È	�0�	}       (55) 

and so, 

	UW¢�,¡Ã 	 =	UW¢q,¡Ã 	UW,¡¢�Ã 	 =	UW,¡¢qÃ 	�             (56) 

Also, at the	x	 = 	1	and the	y	 = 	1, boundaries respectively 

we obtained: 

�£¥Ç,¤Æ 	–	�£¥",¤Æ 	Å 	= 	π	e¢­	"	Ã	È	�0��£,¤¥ÇÆ 	–	�£,¤¥"Æ 	É 	= 	π	e¢­	"	Ã	È	�0�}	       (57) 

	UWpq,¡Ã 	 =	UWp�,¡Ã 	UW,¡pqÃ 	 =	UW,¡p�Ã 	�	             (58) 

In equations (55)-(57)	ω = 	n	or	n + 1 

For	ω = 	n + 1 UW¢q,¡�pC 	 =	UW¢�,¡�pC 	UW,¡¢q�pC 	 =	UW,¡¢��pC 	v	             (59) 

and, UWpq,¡�pC 	 =	UWp�,¡�pC 	UW,¡pq�pC 	 =	UW,¡p��pC 	v	              (60) 
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For ω= n 

UW¢q,¡� 	 �	UW¢�,¡� 	UW,¡¢q� 	 �	UW,¡¢�� 	
�               (61) 

and 

UWpq,¡� 	 �	UWp�,¡� 	UW,¡pq� 	 �	UW,¡p�� 	
�               (62) 

and so, 

Applying the numerical boundary conditions (59-62) in 

equation (43) and taking	∆x � ∆y � h	and	∆
Å" � α	and	 ∆
ÅÌ�Q �β	we obtained the Hopscotch Crank-Nicholson scheme shown 

as follows [14]. 

³UW,¡�pC � UW,¡� ´ � �αUW¢C,¡¢C� ³UWpC,¡�pC � 2UW,¡�pC � UW¢C,¡�pC ´�αVW¢C,¡¢C� ³UW,¡pC�p� � 2UW,¡�p� � UW,¡¢C�p�	´	�β³�3UW¢�,¡�pC � 6UW¢C,¡�pC � 4UW,¡�pC � UWpC,¡�pC ´�β³�3UW,¡¢��p� � 6UW,¡¢C�p� � 4UW,¡�p� � UW,¡pC�p� ´³VW,¡�pC � VW,¡�´ � �αUW¢C,¡¢C� ³VWpC,¡�pC � 2VW,¡�pC � VW¢C,¡�pC´�αVW¢C,¡¢C� ³VW,¡pC�p� � 2VW,¡�p� � VW,¡¢C�p�	´�β³�3VW¢�,¡�pC � 6VW¢C,¡�pC � 4VW,¡�pC � VWpC,¡�pC´�β³�3VW,¡¢��p� � 6VW,¡¢C�p� � 4VW,¡�p� � VW,¡pC�p�´ 78
88
89
88
88
:

(63) 

	

	UW,¡� � 3βUW¢�,¡�pC � UW¢C,¡�pC ³αUW¢C,¡¢C� � 6β´ �UW,¡�pC³1 � 2αUW¢C,¡¢C� � 4β´ �UWpC,¡�pC ³αUW¢C,¡¢C� � β´ � 3βUW,¡¢��p�
�UW,¡¢C�p� ³αVW¢C,¡¢C� � 6β´ � UW,¡�p�³2αVW¢C,¡¢C� � 4β´ � UW,¡pC�p� ³αVW¢C,¡¢C� � β´VW,¡� � 3βVW¢�,¡�pC � VW¢C,¡�pC³αUW¢C,¡¢C� � 6β´	VW,¡�pC³1 � 2αUW¢C,¡¢C� � 4β´ �VWpC,¡�pC³αUW¢C,¡¢C� � β´ � 3βVW,¡¢��p�
�VW,¡¢C�p�³αVW¢C,¡¢C� � 6β´ � VW,¡�p�³2αVW¢C,¡¢C� � 4β´ � VW,¡pC�p�³αVW¢C,¡¢C� � β´ 78

88
88
9
88
88
8:

   (64) 

4.2.2. Numerical Computation and Results 

The C-N scheme developed for the N-S equations of fluid 

flow model formed a series of linear algebraic equations that 

could be expressed in matrix form. The numerical results can 

therefore be generated using MATLAB software. 

The data used to obtain the results were	k � 0.001, h �0.1, l � 0.1	 and 	Re � 4000	 using bounded (square) 

computational domainΩ � Ñ�x, y�:	0	 Ò 	x	 Ò 1, 0	 Ò 	y	 Ò 1 . 

Numerical computations were performed using uniform grid, 

with a mesh width∆x � 	∆y � 	0.1. 

The results are presented in 	32	 ) 32	 grid points 

graphically in three-dimensional figures.  

4.2.3. Plots of Solutions of	��Ó, Ô, Õ�	and	��Ó, Ô, Õ� 
The figures 2 a) and b) are 3-D images of 

solutions 	u�x, y, t�	 and 	v�x, y, t�	 plotted 

against	x	and 	y	respectively using MATLAB for the hybrid 

HP-CN scheme developed. 

 
Figure 1. Numerical solutions for	%�Ö, J, ×�	with	∆t = 0.001 and t = 1.0. 

 
Figure 2. Numerical solutions for	��Ö, J, ×�	with	∆t = 0.001 and t = 1.0. 

4.2.4. Discussion of Results 

The 3-D figures clearly show that the solutions are not 

changing suddenly for change in	x	and	y	hence the results for 

CN Scheme developed are consistent. Figures in 

two-dimensional space presented showed the values of the 

absolute errors at the corresponding points along the x-axis 

and y-axis are the same. 

Graphs of	u�x, y, t�	and	v�x, y, t�	against	Ø	is presented and 

is exactly the same as that of	u�x, y, t�	and	v�x, y, t�	against	Ù. 

This shows that the C-N scheme applied on the N-S equation 

of fluid flow problem produce stable solutions 

5. Conclusion 

The Crank-Nicholson scheme was developed and the 

numerical solutions for velocity 

fields,	u�x, y, t�	and	v�x, y, t�	of the system of Navier stokes 

equation for incompressible fluid flow were presented. The 

graphs for the velocity fields were plotted 

against 	Ø	 and 	Ù	 respectively using MATLAB for the C-N 

scheme developed. The schemes developed formed a system 

of linear equations that could be expressed in matrix form 

and therefore MATLAB software was required to generate 

the numerical results. 

The 3-D graphical figures clearly show that the solutions 

are not changing suddenly for change in	x	and 	y	hence the 

results for CN Scheme developed are consistent. 

The scheme was also consistent because the results were 

not changing suddenly for small change in space hence 

convergent. 
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6. Suggestions for Further Research 

This study has not explored all aspects of fluid dynamics. 

The compressibility analysis and Rossby number (ratio of 

nonlinear acceleration to) regarding rotational flows. Also the 

study pressure effects on the flows were by narrowing 

pressure gradients due to the viscous stresses. 

Further explorations can be done on effects of other external 

forces (gravity, Lorentz, centripetal forces), 

magnetohydrodynamics and geographical features of 

atmospherics fluid flows. 
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