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ABSTRACT

Magnetohydrodynamic (MHD) as an important field of study has developed over several years
since its first experiment by Michael Faraday in 1832. The study is very significant in a number
of ways including Biomedical sciences, engineering, Geophysics, astrophysics, Power generation
among many others. There has been challenges of communications, security, power electric
outages, medical issues among many others that need to be addressed. In this study, two
dimensional hydro magnetic free convective flow of an incompressible viscous and electrically
conducting fluid flow that is turbulent and past a vertical infinite porous plate is considered. The
effect of induced magnetic field arising as a result of fluid motion that is electrically conducting is
also taken into account. A mathematical model of MHD free convection fluid flow that is turbulent
and past a vertical infinite porous plate is developed. The flow is impulsively started after which
the analysis of the flow problem is carried out and modeled using conservation of mass,
conservation of energy and conservation of momentum equations. The arising nonlinear partial
differential equations are then solved using the explicit finite difference scheme. Obtained results
are presented graphically and the effects of flow parameters on velocities and temperature profiles
discussed. Many researchers have done investigations on magnetohydrodynamics but in spite of
all these, fluid flow that is turbulent past a vertical infinite porous plate has not received much
attention. Little has been done on the porous media and other non- dimensional parameters for a
turbulent flow past a vertical infinite porous plate. Simulation of the discretized equations were
done using MATLAB. The impacts of flow parameters on velocities and temperature profiles such
as Grashof number (Gr), Magnetic parameter (M), Hall parameter (m), Prandtl number (Pr) and
Turbulent prandtl number(Pr;) analyzed. It is evident from the results that during both the cooling
and heating of the plate (Gr > 0 and Gr < 0), the primary velocity decreases with decrease in
Hall parameter, m, and increased magnetic parameter, M. It also decreases during cooling of the
plate as the Prandtl number, Pr, is increased and even during the heating of the plate as the Prandtl
number, Pr, is decreased. For Gr > 0 and Gr < 0, the secondary velocity decreases with
decrease in Hall parameter, m, and increase in magnetic parameter, M. It also decreases during
cooling of the plate as the Prandtl number, Pr is increased and also during heating of the plate as
the Prandtl number, Pr is decreased. The results also shows that there is no significant effect on
temperature profile during both cooling and heating of the plate as the Hall parameter is decreased.
There is also no significant change during the cooling of the plate as the magnetic parameter is
increased and even during the heating of the plate as the magnetic parameter is decreased. It is also
evident that there is a decrease in temperature profile,8, when the Prandtl number is increased in
both the cooling and Heating of the plate.
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CHAPTER ONE

INTRODUCTION

1.1 Overview

In this chapter, the history of Magnetohydrodynamics (MHD) in connection with the concept of
free convection fluid flow is discussed together with the description of the terms that are used.
Statement of the problem is also given together with the objectives, significance of the study and

the assumptions made.

1.2 Background of the study

MHD has developed over so many years after its first experiment by Michael Faraday in 1832.
However, turbulent fluid flow in MHD remains one of the unresolved areas in engineering,
astrophysics, geophysics and medicine. The fundamental concept of MHD is that magnetic fields
can induce currents in a moving fluid that is electrically conducting, Kwanza et al (2010). The
particles of this fluid can move from one point to another whenever there is difference in heat
energy. Particles with a lot of heat energy in a fluid will always move and take the place of a
fluid with less heat energy because particles in a fluid move faster when heated than when they
are cold resulting to convection. Fluid flows are either turbulent or laminar but turbulent fluid

flow is of interest in this study.

1.2.1 Fluid dynamics concepts
Convection is therefore mechanism of heat transfer through a fluid in the presence of bulk fluid

motion. Convection can either be forced or free. Forced convection occurs when a fluid is forced
to flow by an external force. Free convection on the other hand occurs when the fluid flow is

initiated by buoyancy forces. In this case, there exist density gradient between materials as a result



of buoyancy forces. When a fluid density remains constant throughout the flow, the fluid is
considered to be incompressible or referred to as Newtonian fluid. When the fluid density varies

in the flow, the fluid is compressible or referred to as non- Newtonian fluid.

Fluid flow can be categorized as either laminar or turbulent. Laminar flow is always characterized
by complete orderliness of fluid particles for instance when oil or honey is poured into a container.
Turbulent flow on the other hand is characterized by fluctuation in velocity or pressure quantities
for instance flow through turbines or flowing water through a tap with high pressure. In free
convection flows, Grashof number,Gr, is important in that flows with Gr >10°are turbulent while

those in the range of 10° < Gr< 10° are considered laminar, (Holman, 2010).

Reynolds number, Re, is a parameter which determines whether a fluid flow is laminar or turbulent.
Low Re indicates laminar flow while a high Re indicates turbulent flow. Since fluid flow that is

turbulent is of interest in this case, these parameters are great of great significance.

A streamline refers to a continuous line within a fluid such that the tangent at each point is the
direction of the velocity vector at that point. It is a curve c that is drawn in the flow field such that
the fluid velocity is along the direction of the tangent of the curve. A fluid flow is described as
steady fluid flow when the velocity at each point is independent of time and the flow pattern is the
same at each instant. It is referred to as unsteady fluid flow when the flow pattern is time
dependent, therefore flow pattern varies at each instant. A path line refers to the trajectory of an
individual element of a fluid. Thus, the streamlines show how all particles are moving at a given
instant while path lines show how a given particle is moving at each instant. Therefore, when the

motion is steady, the path lines coincide with the streamline.



Porous medium on the other hand is a permeable solid with a network of interconnected pores that
is filled with fluid (liquid or gas). The network of pores is assumed to be continuous as it is for the
case of a sponge. Some of the examples of porous materials are rocks, bones, soils, cement slabs,

ceramics, foam among many others.

Considering magnetic field effect on fluid flow, it is important to understand the physical
mathematical framework that concerns the dynamics of magnetic fields in electrically conducting
fluids that is referred to as magnetohydrodynamic (MHD). It is the field of study which takes into
consideration the properties of electromagnetism and fluid mechanics to describe the flow of

electrically conducting fluid, (Kwanza 2010).

Considering the law of electromagnetism, any conductor moving within a magnetic field generates
an electric current known as Hall current. A magnetohydrodynamic free convection fluid that is
turbulent and past an infinite vertical porous plate is studied considering the Hall current and

discussing the impacts of non-dimensional parameters on velocities and temperature profiles.

1.3 Statement of the problem

Among the several research investigations, the combined effects on free convection, turbulence,
and porous medium to the MHD flow on an infinite vertical plate has not been done in one study
hence the motivation to carry out this research. This study is on modeling and analysis of

magnetohydrodynamic free convection turbulent fluid flow past a vertical infinite porous plate.



1.4 Objectives of the study

1.4.1 General objective
To Model and analyze a MHD free convection fluid flow that is turbulent past a vertical infinite
porous plate with Hall current and the effects of non- dimensional parameters on velocities and

temperature profiles discussed.

1.4.2 Specific objectives
1) To develop a mathematical model using the conservation of mass, conservation of energy

and conservation of momentum equations considering a fluid flow that is turbulent and
past a vertical infinite porous plate.

i) To solve numerically, the partial differential equations arising from the developed
mathematical model.

iii) To analyze the effect of changes in the non- dimensional parameters on the velocity and

temperature profiles of the fluid.

1.5 Significance of the study
This research will be applicable in a number of ways including Biomedical sciences, engineering,

geophysics, astrophysics among many other applications as discussed below:

i) MHD has its significance in the field of medicine such as magnetic drug targeting which is a
precise way of administering drugs to the affected area. This is very important in cancer research.
It is also useful in magnetic devices for cell separation, adjusting blood flow during surgery,

transporting bio- waste fluids among many other uses.

i) MHD has its significance in the field of engineering including electric power generation,

electromagnetic pumping and propulsion and control of moving molten metals



It is also significant in developing space weather forecasting capability which is important for safe
operation of manned spacecraft and a variety of communications, global positioning, and defense
satellite systems as well as for protection against geometrically- induced electric power outages

on earth.

i) It is worth noting that MHD is also significant in the study of the earth’s surface which
comprises of the inner and the outer core containing a significant amount of iron. The outer core
which is liquid in nature moves in the presence of magnetic field leading to the formation of eddies

due to Coriolis Effect affecting the earth’s magnetic field.

iv) MHD is very useful in describing astrophysical systems. These are in most cases in an unstable
local equilibrium therefore requires kinematic consideration for their description within the

system. For instance the sunspots result from the sun’s magnetic field.

1.6 Assumptions

The following assumptions are made in this research:

i) The fluid taken into consideration is incompressible
i) There are no chemical reactions or contaminants in the fluid
iii) There is no external electric field

iv) The fluid flow is non- relativistic.



CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction
A lot of research has been undertaken in MHD therefore literature related to turbulent fluid flow,
vertical infinite plate and the effects of non-dimensional parameters are reviewed in this chapter.

Knowledge gap also identified.

2.2 Review of related literature

Mukuna et al. (2020) modeled a Hydromagnetic free convection turbulent fluid flow over a
vertical infinite plate using turbulent Prandtl number. They found out that there is an increase in
primary velocity whenever magnetic parameter(M) is decreased, Hall parameter increased and
when Grashoff number is increased. It was also evident that secondary velocity increases when
magnetic parameter (M) is decreased and decreases when Hall parameter is increased. They also
found out that temperature profile decreases when magnetic parameter (M) is decreased,

decreases when Hall parameter is increased and also increases when Prandtl number decreases.

Vijayalakshmi et al. (2018) did a research on the unsteady electrically transmitting fluid past an
oscillating semi- infinite vertical plate with uniform temperature and mass diffusion under
chemical reactions. They realized that heat transfer progress is enhanced with the oscillating

frequency, Prandtl number and thermal Grashof number.

Odekeye and Akinrinmade (2017) did a MHD research on mixed convective heat and mass transfer
flow from vertical surfaces in porous media with Soret and Dufour effects and found out that an

increase in magnetic field leads to a decrease in velocity and increase in temperature.



Loganathan and Eswari (2017) did a research on natural convective flow over moving vertical
cylinder with temperature oscillation in the presence of porous medium. They used the iterative
tridiagonal semi-implicit finite difference method. Their results showed that whenever the
permeability parameter increases, there was a corresponding increase in velocity and boundary

thermal layer and decrease in concentration layer.

Mukuna et al. (2017b) analyzed heat and mass transfer rates of hydromagnetic turbulent fluid flow
over an immersed cylinder with Hall current. They modeled the flow using conservation equations
and solved the arising partial differential equations using finite difference scheme. They concluded
that increasing the hall parameter increases the velocity profiles while an increase in magnetic

parameter leads to an increase in temperature and concentration profiles.

Mukuna et al. (2017a) researched on hydromagnetic turbulent free convection fluid flow over an
immersed infinite vertical cylinder, modeled their problem using conservation equations and later
solved the arising partial differential equations using finite difference scheme. They found out that
whenever the Hall parameter was increased, there was a corresponding decrease in secondary

velocity while the primary velocity profile was not affected due to turbulence.

Kiprop (2017) did a research on an unsteady MHD flow with mass and heat transfer in an
incompressible, viscous, Newtonian and electrically conducting fluid past a vertical porous plate
with consideration of chemical reaction, thermal radiation and induced magnetic field. Solution of
governing equations were done using finite difference scheme, that is the Crank- Nicholson
method. His findings shows that velocity decreases with increasing magnetic parameter (M) and

also decrease in concentration with increasing Schmidt number and chemical reaction.



Seth et al. (2016) studied on the effects of an unsteady free convection flow past an impulsively
moving porous Vertical plate with Newtonian heating and found out that fluid flow in both the
primary and secondary flow directions are accelerated by the hall current, permeability of the
medium, thermal buoyancy force, Newtonian heating and thermal diffusion throughout the
boundary layer region while magnetic field tend to retard the fluid flow and together with hall
current tend to increase the secondary skin friction. They also showed that thermal buoyancy force
and thermal diffusion tend to increase the secondary skin friction. Newtonian heating tends to

reduce primary skin friction but increase secondary skin friction.

Chebos et al. (2016) investigated an unsteady MHD free convection flow past an oscillating
vertical porous plate with oscillatory heat flux and found out that there is velocity increase with
decrease in suction parameter and magnetic parameter and increase with increase in Darcy number.
They also found out that temperature increases with decrease in Prandtl number and increase with

increase in radiation parameter and suction parameter.

Umameheswar et al. (2016) did numerical investigation of MHD free convection of non-
Newtonian fluid past an impulsively started vertical plate in the presence of thermal diffusion and
radiation absorption. Their results show that increasing magnetic field parameter decreases the

velocity.

Vishnu et al. (2016) studied hydromagnetic asymmetrical slip flow over a vertical stretching
cylinder with convective boundary on a viscous fluid and used Runge- Kutta method to solve the
arising partial differential equations. They found out that whenever the velocity-slip increases and

Prandtl number decreases, the normal boundary layer thickness increases.



Rajesh et al. (2016) investigated finite difference analysisof unsteady MHD free convective flow
over a moving semi-infinite vertical cylinder with chemical reaction and temperature oscillations.
They solve the arising partial differential equations using the Crank- Nicolson finite difference
scheme and found out that their results were in agreement with available computations and

literature.

Ravi and Sambasiva (2016) studied bouyancy induced natural convective heat transfer along a
vertical cylinder under constant heat flux and were able to show that temperature of both cylinder

and fluid increases along axial direction and decreases along radial direction.

Deka et al. (2015) researched on transient free convection flow past a vertical cylinder with
constant heat flux and mass transfer and concluded that velocity and temperature increases

significantly with time and that at larger times, concentration approaches steady state.

Massoud et al. (2015) studied the effect of magnetic field on free convection inclined cylindrical
annulus containing molten potassium and found out that increasing magnetic field leads to a loss

of symmetry and shape of isotherms.

Mayaka et al. (2014a) investigated a MHD turbulent fluid flow past a vertical porous plate and
solved the governing equations using finite difference scheme and Prandtl mixing length theorem
was used to handle turbulence. He found out that the Hall current,Joules’s heating and mass
transfer had effects on primary and secondary velocity, and also concentration and temperature

profiles.

Kwanza et al. (2010) worked on a mathematical model of turbulent convective fluid flow past an
infinite vertical plate with Hall current in a dissipative fluid and found out that an increase in hall

current leads to an increase in velocity profiles.



Sarris et al. (2010) explained magnetic field effect on the cooling of a low-Pr fluid in a vertical
cylinder in the presence of magnetic field and found out that magnetic fields has no effect at the

initial stages of development of the boundary layer.

2.3 ldentification of the Knowledge gap
In the above review, section 2.2, it can be noticed that indeed a lot of research has been undertaken
in MHD. However, none has modeled and analyzed fluid flow that is turbulent and past a vertical

infinite porous plate.

Kwanza et al. (2010) developed a model of a turbulent convective fluid past an infinite vertical
plate with Hall current in a dissipative fluid but did not consider the porous medium. It is also
noted that Chebos et al. (2016) investigated MHD free convection flow past an oscillating vertical
porous plate with oscillatory heat flux but ignored Hall current and a vertical infinite porous plate

that is not oscillating.

It is due to this therefore that a mathematical model of a MHD free convection fluid flow that is
turbulent and past an infinite vertical porous plate is developed. In this study, consideration is
given to the effect of porous material together with non- dimensional parameters for a fluid flow

that is turbulent.
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CHAPTER THREE

RESEARCH METHODOLOGY

3.1 Introduction

The general conservation equations are given in this chapter, which include the conservation of
mass equation, conservation of momentum equation and conservation of energy equation. Non-
dimensional parameters that are very significant in this study are also given together with the
explicit finite difference scheme which is the method of solution used to solve the arising partial

differential equations.

3.2. Conservation Equations

Fluid flow in fluid dynamics can be described using the conservation equations based on the
conservation laws which include the law of conservation of mass, the law of conservation of
momentum and the law of conservation of energy. These laws give rise to the conservation

equations which include:

i) Continuity equation
i) Navier- Stokes equation

iii) Energy equation

Each of them is discussed below:

3.2.1 Continuity Equation

This equation is also referred to as conservation of mass equation. It is based on the principle of
conservation of mass, which states that the mass of a body can neither be created nor destroyed.
This is given as:

11



dm

o (3.1)
Where m is the mass
Edward et al. (2005) derives continuity equation and gives:
0p |, =, —
o> T V. (p1)=0 (3.2)
Where,

V= ;—xi+ %j+ %fc (3.3)
Continuity equation can be given in other forms which include;
a_i +7.Vp+ pV. T =0 (3.4)

Where %i.Vp + pV.1 in equation (3.4) is the expanded form of V. (pi) in equation (3.2). Thus

the mass conservation equation is given as:

— +pV.U =0 (3.5)

d 0 R
Where (3.5) is obtained by substituting the material derivative d—i = 6_€ + (U.V)p into (3.4).

Note that equation (3.2) is commonly used in computational fluid dynamics (CFD).
For an incompressible fluid, continuity equation in cartesian coordinate system is given as (Edward

J. S. etal, 2005)

12



PP PP +p CLCLNCEL g (3.6)
ot ox oy 0z oX oy oz

Where u, v and w represent the velocity components x, y and z axes respectively.

For an incompressible flow, the fluid density is constant therefore

d
ﬁ = () and the continuity equation (3.2) reduces to

<
<l
I
[a)

3.7)
In Cartesian coordinates, the continuity equation in incompressible flow is therefore given by:

ou v ow

—+—+—=0 (3.8)
oXx oy oz

3.2.2. Conservation of Momentum Equation
This equation is also referred to as Navier-Stoke’s equation (N-S) for a Newtonian fluid. The

differential equation expressing the law of momentum is given by:

a(pth)

i V.(ptid) = pf+ V.o (3.9)

Where pf refers to the sum of body forces and V.o represents the stress divergence term.

On expanding the time derivative and divergence terms and rearranging remaining terms we get:

p (5

N

+ ﬁﬁ’ﬁ) +ﬁ[a—p+ U.Vp + pﬁ.ﬁ] = pf+ V.o (3.10)

Q
~
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The first equation in brackets in the left-hand side of equation (3.10) represents the inertial forces

per unit volume.

Since the fluid density is constant, for an incompressible flow, it implies that the term in square or

closed brackets of continuity equation (3.10) is equal to zero. Thus, equation (3.10) becomes:

ou — N\ — -
p (6—1: + (u.V)u) =pf+ V.o (3.11)

- - - - d a_) d = - - - -
Using material derivative d—? = a—? + (u.V)u, the differential momentum equation takes the

form:
du =
pzzpf+ V.o (3.12)

d N
Where p d—? represents the inertial force

pf represents body force and V.o refer to surface force.

Anderson, (1991) used the definition of stress divergence to give the three components of

momentum equations in cartesian coordinate system as:

ou ou éu  ou op ou ou du
Pl —+tU—+V—FtW— |=——+pf +u| —S+—+—;
ot ox oy 0z OX ox" oy® oz

(3.13)
N N NV op ov ov oV
P a+ua—+v—+wa— =——+pfy+,u F+—2+F
x o a) o Xy a (3.14)
oW OW OW oW op o’'w  o’'w  o'w
Pl —HtU—+V—FtW— |=——+pf, + y| —5+—+—;
ot X oy 0z 0z ox~ oy® oz (3.15)
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Where u, v, w are the velocity components in the x, y, z directions, p is the pressure, f,, f,, f, are

the body forces components which include Coriolis force, gravity and electromagnetic force in the
x,y, z directions. In this study we will consider only gravity and electromagnetic forces as the

body forces.

3.2.3. Energy Conservation Equation
This is a scalar equation derived from the principle of thermodynamics. It is based on the first law
of thermodynamics which states that the amount of heat added to the system is equal to the change

in the internal energy plus the work done. This is given as:
dQ = dE + dW (3.16)
The conservation of energy equation for a Newtonian fluid is given as

dQ  dEp . dw
— = — 4+ — 17
dt dt t dt (3.17)

daq .
Where n is the rate of change of heat
dET . .
S is the rate of change of internal energy at constant temperature

aw
’r is the work done by the system.

For an incompressible fluid, the conservation of energy equation is the resultant of the First law of

Thermodynamics and therefore given as:
oT — = - -
pCy |5+ V()| = V. (kVT) + @ (3.18)
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Where,

p is the fluid pressure

C, is the specific heat at constant pressure

k is the thermal conductivity

P is the fluid density

¢ 1s the viscous dissipation given by:

[(aujz (avjz (awﬂ (av au)2 [aw avj2 (au awj2 2(au ou auj
p=2||— | +|— | +|— | |[+|—F— |+ —F+— |+ —+— | =] —F+—+—
OX oy oz ox oy oy oz 0z 0OX 3lox oy oz

(3.19)
u, v, w are velocity components in x, y, z directions respectively.
The conservation of energy equation in Cartesian coordinate is therefore given as:
2 2 2
PC ﬂjtug+v£+wﬂ =k 6I+6I+61— + ¢ (3.20)
Pl ot OX oy oz oX~ oy° oz

3.3. Turbulence and Time Averaged Equations.
Conservation equations are transformed to Reynolds averaged equations in order to govern
turbulent flow. Turbulence result whenever a disturbance is induced in a laminar flow. Deriving

the Reynolds equations is done by decomposing the dependent variables of the laminar flow of

16



conservation equations into time-mean and fluctuating components and then time averaging the

entire equation.

The following are true when turbulent flow parameters are considered:

u=u+u (3.21)
v=17+7v (3.22)
w=w+w (3.23)
p=p+p (3.24)
T=T+T (3.25)
Where,

w=g fyude (3.26)
=7 fyvdt (3.27)
W=z [, wdt (3.28)

3.3.1. Time-Averaged Continuity Equation for Turbulent Flow

Considering continuity equation(3.8) takes the form Z—u + ol + w _ 0

X oy oz (3.29)
And substituting turbulent fluctuations, u= a +u',v= v+ v’

Andw = w + w' yields

17



Wy v WL My (3.30)

ou
Sttt ot~ =0 (3.31)

Simplifying equation (3.31) gives

ou | ov , ow
= T 5 +5-=0 (3.32)

|
+
|

Equation (3.32) is the mean velocity component for mass conservation equation.

Considering equation (3.32), equation (3.30) reduces to:

our avr owr
rm E + o = 0 (3.33)

This is the fluctuating component of velocity for turbulent flow for mass conservation equation.
For turbulent flow, mass is always conserved for both mean velocity components and fluctuating

velocity components.

3.3.2. Time-Averaged Momentum Equation

Considering momentum equation in x-direction when body forces are neglected gives:

ou ou ou 3_“__16_19) E(az_u o%u 32_“)
ot + (u6x+v6y+waz)_ p(ax +p dx2 +6y2 +azz (334)

When equation (3.29) is multiplied by u and added to equation (3.34) it yields

o (o) S | 1 (90, k(P o, o
ot + (6x + y + 0z )_ p (ax) + p (6x2 + dy? + 622) (3.35)

When equation (3.34) is averaged overQ — t, it gives

18



(O 0G0y (0 o oty
+ (6x + oy + 9z J  p \ox + p \0x2 + dy? + 0z2 (3.36)

But ‘Z—f = 0 and substituting foru = 2 +u', v= v+ v and w = w + w' in equation (3.36) it

yields:

o | SR\ (06 0Ty (065 ow)_ 1 (0F) L u (0T 0% o'n)
(ax+ax + 3y+3y+ oz Tz ) = +p 8x2+6y2+622 (3:37)

It can be shown that:

ou

ow? _ ,_ou

W =2u ox (338)
ouv uov vou

oy -y T oy (3.39)
ouw uow wou

az oz T 0z (3'40)

When equation(3.38),(3.39) and (3.40) is substituted to equation (3.37) it Vyields:

oS B R ) G O W 4 N
(Zu 0x + 0x + oy + oy + oy + 0z + 0z + oz J p \0x T p \9x2 t
%u a%u
5t o) (3:41)

When equation (3.32) is multiplied by # and subtracted from equation (3.41), the result is:

g20 GO | (00, 0UOY | (0L 0By 1 (0n) k(00 o', o'y
(uax+ ox + v6y+6y + Waz+ 9z )] p \ox +p 6x2+6y2+822 (3.42)

Rearranging equation (3.42) yields:

SELNLLGE . Y .y Y 1 L
T L v p( L e -+ 5 (3.43)

Momentum equations in the y and z-directions can be done in the same way and given as:
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_ov | _90v _ 1 ap) u (azﬁ 02%v 6217) (61717 o(v)? az‘zW)
uax+vay+waz p (ax + p \9x2 + dy? + d0z2 0x t dy + 0z (3'44)
ﬁaw_i_l7aw_|_V_Vaw7_ 1 (615) n u (82\71/ n 22w 22w

ox oy 9z p \ox p \ox2

owu  owv . a(w)?
o ) G 5t 5s)  6a)
Equations (3.43), (3.44) and (3.45) are turbulent momentum equations for turbulent flow for an

incompressible fluid in the x, y and z- directions respectively.

3.3.3. Time-Averaged Energy Equation

When the dissipative function is neglected in equation (3.20) the energy equation is given as:
oT oT oT oT 2T a%r a%r
pCp(a +U£ +17£ +W£):k(ﬁ+ﬁ+§) (346)
When equation (3.29) is multiplied by T and added it to equation (3.46) in component form the
result is:

aT o(ut) owr) |, owr) _ k (9*T | 9°T | 9°T
at T ox + ay + 9z pCp (6x2 ay? + 622) (3.47)
When equation (3.47) is averaged over0 — t, it gives:
aT | ar) |, 9wl +a(w—T) _ Kk
at ax ay az

(GZT + 9%T + 627)
pCp \0x2 dy? 0z2

(3.48)
But T = T Since fluctuation in temperature is neglected andu = u+u(t), v = v+ v(t) andw =

w + w(t), thus when this is substituted to equation (3.48) and rearranging it yields:
oT , (—0T |, = ou _aT
@+ T3+ (

a’T
0z 0z E (ﬁ + 6_}12 + )_
our) , awr) |, a(wr)
(ax t dy + 0z )
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Since Z—z = Z—; = ‘2—‘: = 0 as shown from the time- average equation and hence substituting this

into equation (3.49) yields

— — = = 27 20 27 uh) wn) wT)
oT | 70T | 0T  —0oT k (a T , 9°T | @ T)_ (a(uT) o(vT) +6(WT)) (3.50)

ax? ay? 922 ax ay dz

Thus equation (3.50) is the energy equation for turbulent flow.

3.4 Electromagnetic Equations
MHD comprises of electromagnetic and fluid mechanics therefore governing equations are always
taken out of electromagnetic theory and fluid mechanics. These include Maxwell’s and Ohm’s law

equations, David (2006).

3.4.1. Maxwell’s Equations

Maxwell’s first equation known as curl E equation which gives the relationship between the

electric and magnetic fields is given as:

B

V xE = = (3.51)
Maxwell’s second equation known as Maxwell’s curl H is given as:

VxH=] (3.52)
(3.52) can be expressed in a general form as:

VxH=j+2 (3.53)

Where Z—Lz refers to the displacement current.
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Therefore the four Maxwell’s equations governing electromagnetic theory are given as follows:

VxE=<" (3.54)
VxH=] (3.55)
V.E=0 (3.56)

Equation (3.56) is Gauss’ law of magnetism.
V.D =p, (3.57)
Equation (3.57) is Gauss’ law of electricity.

3.4.2. Ohm’s Law

The magnitude of the induced current for any conductor moving within the magnetic field is given

asq % B. Thus the Ohm’s law expressing the current density is given as:
J = oE (3.58)
In this case, E is the effective electric field intensity and o is the current density.

But when a conductor is moving in a magnetic field, this is given as E + § x B where E is the

applied electric field and g x B is the induced electric field. This brings equation (3.58) as:
J=0o(E+§ xB) (3.59)

Equation (3.59) is the Ohm’s law giving the current density.
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3.5 Non- dimensional parameters

These are parameters that are useful in fluid dynamics and they include Reynolds Number, Re,
Prandtl Number, Pr, Grashof Number, Gr, Time Parameter, Rt, Eckert number, Ec, Magnetic
Parameter, M, among many others. They are introduced to the governing equations through scaling

variables. This is to ensure that the solution is independent from units of any given variable.

3.5.1 Reynolds Number, Re

This is the ratio of the inertia force to the viscous force. It gives the significance of inertia and
viscous forces in fluid flow.

It is used to determine whether the flow is laminar or turbulent. Low Re shows laminar flow while

high Re indicates turbulent flow. It is given by:

Re = AL
MU

Where p is the fluid density,
v is the velocity scale,
L isthe Length scale and

H s the fluid viscosity Incropera, (2007)

3.5.2 Prandtl Number, Pr

This is the ratio of viscosity to the thermal diffusivity. It is given by:

Where v = £ is the kinematic viscosity and
Yo,
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k
o =—— is the thermal diffusivity coefficient.
PG,

3.5.3 Grashof Number, Gr

It is the ratio of forcing (buoyancy) force to restraining (viscous) force.

It is significant in free convection flows. Gr of over 10%ndicates turbulent flow while Gr in the

range 10° < Gr <10°indicates laminar flow, (Holman, 2010)
It is given by:

gﬁ(T —TOO)L3

2
1y

Gr =

g is the gravitational acceleration

S refers to the thermal expansion coefficient.

T and T, are the surface and bulk temperatures respectively

L is the characteristic length and

v is the coefficient of kinematic viscosity.

3.5.4 Time Parameter, Rt

This is a parameter characterizing the time scale of the problem with respect to flow velocity. It is

defined as
_ Ly
ko= L
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3.5.5 Eckert Number, Ec
This represent a dimensionless parameter which is important in flows of high speed with

significant viscous dissipation . It gives the ratio of kinetic energy to the boundary layer enthalpy.

It is given by:
2
Ec= u
CAT

p
AT refers to temperature change.

3.5.6 Magnetic Parameter, M

Refers to the ratio of magnetic force to inertia force. It is given by:

\ 2 = Magnetic force _ ou*Ho
Inertia force pu’

2
=M= |‘2|U
\/ ol

3.5.7 Turbulent Prandtl Number, Pr,

This refers to the ratio of momentum eddy diffusivity to the heat transfer diffusivity. It is given as:

-
Pr, = M \where gy = 2k2z2 2
EH dz

3.6 Method of Solution
The arising partial differential equations shall be solved using the explicit finite difference scheme

which gives the numerical approximation of the solution. And thereafter the results presented in

form of graphs.
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Grid mesh is considered which assumed to be a rectangular plane with the horizontal axis y and
the vertical axis t. In this case, t is varied from 0— a and y is varied from 0 — b with the intervals

being divided into n and m each having width At and Ay respectively.
Given any point on the rectangular plane say (y(, tj) can be defined as
yi= Ay; t=1,23, ..
tj = jAt;j =123, ...

The given figure is an illustration of the intersections at the mesh points by the grid lines y; and ¢;

¥axis
Ay
e —
At
(i, j+1)
(L)) — (i+L))
(I_]"JI} |
{:1f_l]

Y- axis
Figure 3.1: Finite difference Grid Mesh

Considering the finite difference approximation for the first and second derivatives of U with

respect to y, and applying the Taylor’s series expansion in variables y and t at the points

(a1t ) and (v-1,j) t;) about (;, t;) we obtain:

26



1
Uirsp = Ui + Uy pby + 5 Uyyap(By)* + - (3.60)

Ut-1j) = Uq,p — Uy ply + %Uyy(i,,-) (Ay)? + - (3.61)

Ug,j+1 = Uqjp t U pAt + %Utt(i,j)(Ay)z + o (3.62)

Uij-1) = Uqj — U At + %Utt(i,j)(Ay)z + - (3.63)
i aU(yi'tj)

In this case, U,jy = Ugy,,;) and Uy, j = oy (3.64)

Eliminating U,, and U,,,, in equations (3.60) and (3.61) and also U, and U, in equations (3.62)

and (3.63), the following set of equations are obtained.

al;(yi,,-) _ U(i+1,j)2—hU(t—1,j) + o(h?) (3.65)
az;(ti,,-) _ U(i,j+1)2_kU(i—1J') +o(k?) (3.66)
a;z;(;j) ) —2Uh(;,,-)+U(i_1,j) +o(h?) (3.67)
62611(;,1) _ Uajen) —Zle(;,,-)+U(i,j_1) + o(k?) (3.68)

The approximate solutions for the finite difference scheme for the differential equations are
obtained using equations (3.65), (3.66), (3.67), and (3.68). Smaller values of At and Ay are

considered to minimize the order of truncation errors.
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CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Introduction

In this chapter, the governing equations for the problem are formulated. Consideration of the
analysis of hydro magnetic free convection fluid flow that is turbulent and past an infinite
vertical porous plate is given. The fluid being considered is electrically conducting. Conservation
equations are used to modeled the problem in this chapter as stated in chapter three . The
modeled governing equations are non-dimensionalised for this problem and some of the non-
dimensional parameters discussed in chapter three are also introduced. The approximate
numerical solution determined by the use of explicit finite difference scheme and solved by the

use of MATLAB computer software. The results are presented graphically and discussed.

4.2 Mathematical model

A two-dimensional flow is considered in this study. The infinite vertical porous plate is taken to
be along the x-axis and the y-axis taken to be on the horizontal whereas the z-axis normal to the
plate. The fluid being considered is incompressible and viscous. A magnetic field of a high
magnitude Ho is applied perpendicularly to the direction of flow of the fluid. It is assumed that
the induced magnetic field is negligible therefore H = (0,0, Hy) as indicated in the schematic
diagram in figure 4.1. At time t*>0, the fluid is stationary and the plate starts to move
impulsively in its plane with velocity U, and the temperature of the plate raised instantly to Ty,

and maintained constant later on.
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Figure 4.1: Schematic diagram for the fluid flow.
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H,
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The flow is therefore governed by the following equations:

au* L OU* 10p (azu*) a(uw) >
—_— T — — +

at* tV ay* p 0x dz*2 az* trg JxB

ov* LOV: ( 62V*) _oww |, 7 B

at* +V ay* U\ 222 9z*2 t/xB

(4.2)

v k(2T o(wh)

at* ay* pCp \ 09z*2 az*

Where,

L= % is the kinematic viscosity

p s the fluid density

pg is the specific weight of the fluid

The initial and boundary conditions will be as follows:
t*"<0:U"=0,V*=0,T" = T4 everywhere
t*>0:U"=0,V*=0, T* =T, atz » o

Ur=1V"=0,T"=T,, atz=0

(4.1)

(4.3)

The change in elevation up the plate will result in the pressure gradient in the x- axis direction

% __
therefore 5. = Pl

Thus equation (4.1) becomes:
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au* ou* _  (9%U* o(uw)
v - (62*2) az*

Hollman, (2010) defined that the difference in density can be expressed in terms of volume

coefficient of expansion given by

_1 8U _ 1 V-V _ (P —p)
=3 (Ejp T Ve T-Tw  p(T—Te) (45)

Poo —
TS, B = ey

When equation (4.5) is substituted in equation (4.4), the result is:

au* L 0U* (azu*) (uw)
v B dz*2 az*

prE 3y +gpB(T" = To) +] X B (4.6)

Theterm ] x B represents electromagnetic force therefore its components can be obtained from

the equation of conservation of electric charge given by
V-J=0, giving j,~= constant where
] = (jx* v Jy*r Jz* )

Since j,~ = 0 at the plate which is electrically non-conducting, this constant is assumed to be

zero, therefore j,- = 0 everywhere in the flow.
Cowling, (1957) gave the generalized ohm’s law with Hall current effects as
f+“’;_ofe(7xﬁ)=(ﬁ+uec7xﬁ+e—;ﬁpe) 4.7)

= : . S .9 .0 0
Where, V= Gradient operator, given as V= i~ +] 3 + k&
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p. = Electron pressure
E = Electric field (vm™1),
U = electron permeability (H/m)

w,.T, = m is the hall parameters

In this case, the ion- slip and thermoelectric effects are neglected.
Since there is no applied electric field, then

E=0

If we neglect electron pressure, equation 4.7 reduces to;

-> a)e_[e -> —)_ - —
J*+=5 20 x H)y=0(pueq x H)

~

Wheref =Jxr s + i

When equation (4.8) and (4.10) is substituted into (4.9), it yields:

i j k i j k
i Lz jy* Jz#| = OUe |4 v w
H 0 0 Hy

jx* +jy* +JZ* + HO
0o 0 H,

This yield,

We Te

Jer ¥ iy + it H, (Hojy» — Ho jx» + 0)=ou.(VHy, — uH, +0)

Equation (4.12) gives:

Jxr + 0T jy* = oU.HV”
32
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(4.9)

(4.10)

(4.11)

(4.12)
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Ty = 0T Ji- = oueHoU"
Sincem = w,t,, then
e + iy = ooy
Jyt = mjer = = opcHoU"

Simultaneous solution of equation (4.15) and (4.16) gives

~ _ OUeHo(mU™+V™)
K —

x 1+ m?

A _ OUeHo(mV™=U™)

yo 1+ m?2

Therefore the force due to electromagnetism is given by

i j k
fX§=jx jy* 0
0 0 B,

i k
j X § = | jy* 0
0 0 pH,

Equation (4.20) also reduces to

JXB = (.ueHOfy*_.ueHOJAx* +0)
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(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)
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It is therefore from this equation that electromagnetic force along x-axis and y-axis can be

obtained from equation (4.17) and (4.18) respectively. These are given as:

_ oudHZmv*-U")

(J x B),. =20 (4.22)
(xB),. =— Moy (4.23)
Thus, the governing equations (4.1) and (4.2) become:

v = o(30) - LR (T - T, ) + ) (4.24)
S v i = o(5E) TR ep(r - Ta) - SRS (425)

4.3 Non-dimensionalization
We non-dimensionalize equation (4.3), (4.24) and (4.25) using the following scaling variables in

the process of Non —dimensionalisation.

t* Ué *U U, U* v* T — T
t = 0,=Z O,yzy 0U=—,V=—,9= " V:, (426)
v v v Uy Uy Tw — Too
In this case;

The superscript (*) denotes dimensional variable.

U, Denotes reference velocity,

T, — Tx Denotes temperature difference between the surface and the free stream temperature.

When the above scaling variables are used, we obtained the following:

oU* _ 9U*dU at U_ga_u
at* _ au ot at* v at

(4.27)
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av*
at*

au*
az*

av*
az*

aT”
at*

aT* 30 ot .
ov = —T* —
20 at at* (Tw %) v ot

av*aov at _ U; av
v at at* v ot

dU* QU 8z _ U AU
U 0z dz* v 0z

ov*ov 9z __ U oV
v 8z dz* v 0z

UZ a6

oU* _ aU*QU dy _ U§oU

ay*

au”

az**

v
Z =

0z

aT* _ 9T’ 36 dy
T 90 ay dy*

ay*

0%T*

az**

0

0z

0

0z

9

0z

au dy ay*

Ué av

v oy

usouy oz _ U3 2%

v az/) az* = v? 9z2

)62 ug 92v
v 0z/) 0z* v? 0z2

U 90
v dy

= (Ty —Tx)

az*

(UO(T‘; —Tao) 69) dz U2 (Tyy — Top) 026
Zolw —Teo) OY =[R2

v 0z v2 d0z2

When the above scaling variables are used and substituted into (4.24) gives;

vgdou U
v ot v
Thus

vdou U
v ot v

oudHg (mv*= U*)
1+ m?2

U v 9%u ouw . .
P __O(ﬁ) — -~ 9B(Ty —To) +

dy v

0z2

au _ ug (62U) _ ouw oudHgy,(mv-U)

dy v 9z _g’B(TW - °°)+ 1+ m?2

Equation (4.37) when rearranged gives
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(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)



ougHE¥(mV—U)
3 + 2
0z Us U§(1+m?)

6U+ U (azu) ouw vgB(Tyy — Td)
at ay  \az2

Considering the non-dimensional parameters given as

3 )
UO
_ T =Ty
9 - T* — T 1
w [ee]
M2 = ousHgv

u§

Equation (4.38) yields,

ou ou 02U ouw M?(mv-U
Wy (L) I g L)
at dy 922 dz (1 +m?)

Following the same procedure, it can also be shown that equation (4.25) results in;

viav | ud ov _ U} (BZV) ovw  OuEHGy,(mU+V)

v at v Ay  v2 \9z2 0z 1+ m?2

On rearranging equation (4.41) gives

BZV) ovw  oudHGy,(mU+V)

av av 1
a”a—;(azz ~ %

0z 1+ m?2
Introducing non-dimensional parameters equation (4.42) reduces to;

6V+ v _ (azv) ovw M?Z(mU+V)
at dy  \9z2 0z 1+ m?2

212
2 _ OUgH§v
Where M+ = T

0

Considering equation (4.3) and substituting (4.31), (4.35) and (4.36) into it yields
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2 * 2 T
U069 +(T* _ oo) 69 — kﬂ(Tw Too)ﬂ_aﬂ (444)

*
(TW °°) ay pCp v2 dz2 4

Rearranging equation (4.44) yields,

VS e (50) ~ 5 (4.49
Using the non-dimensional parameter Pr = ”kﬁ
Equation 4.45 reduces to
Pr(S+ve)= (53) -t (4.46)
Thus the governing equations are as follows:
T+v=(35) -5 - 6ro + D (4.47)
=GR -5 N (449
Pr(s+vy)= (52) -Pr% (4.49)

Boundary and initial conditions are,

t<0,U=0,V=0,08=0,everywhere

t>0,U=0,V=0,0=0,atz > o

U=1,V=00=1atz=0
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4.4 Prandtl Mixing Length Hypothesis
It is not possible to solve these equations due to the existence of the Reynolds stresses uw, vw
and wT in equations (4.47) and (4.48) and (4.49) respectively. Therefore the need to adopt the

Boussinesque approximation given as:

Ty =—puv = A av (4.50)

dy

It is worth noting that A, is not a fluid property as u but depends on mean velocity U. On the
other hand , puv stands for flux of x- momentum in the y-direction , which is assumed that this
momentum was transported by eddies which moved in the y-direction over a given distance say |
with no interaction and then mixed with the existing fluid at the new location i.e momentum is

taken to be conserved over distance | , (McComb, 1992).

Prandtl was able to deduce experimentally that:

— (002
puv = —p| (6y) (4.51)
At this stage, more assumptions are taken as follows:

i) y > 5, viscous term in shear stress is neglected.
i) | = ky, where k is the karman constant given as k = 0.4, McComb, (1992).

On substituting]?, it yields:

_ 2.2 (U 2 _ .
puv = pk<y (ay) This reduces to

w= —kty? (%) (452)
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From equation (4.52) can be deduced further to give

T = —k?22 (";—‘Z’)2 (4.53)
And,
W = —k2z2 (Z—Z)Z (4.54)

Considering the turbulent Prandtl number also given by

£ ou
Pr, = X where gy, = —2k?z% —
£y 0z

Thus,

- 2k?%z? ouog
ey 0z 0z

It can be deduced from (4.52) that WT = (4.55)

Substituting equations (4.52), (4.53), (4.54) and (4.55) to (4.47), (4.48) and (4.49) yield the

following set of differential equations as:

ou | U _ (92U\ | 3 [, 2 2 (9U\? M2 (mU+ V)

at +V6y - (622) +6z [k z (62) ] + Gro + (1 +m?2) (4'56)

Wy _ (0 0o 0 (0U)F] _ MEGmY-U)

at + Vax - (622) dz [k z (az) ] 1+ m?2 (4-57)
a0 00 926 2k2%z2%2 01 060

Pr(5 +V@) = (52) +pr( P =) (4.58)

Equations (4.56) and (4.57) can be simplified further and then the final set of the governing

equations given as:
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v () () s () o 5D e

0z 0z2 (1+m?3)

()= () rr(EE) =

Equations (4.59), (4.60) and (4.61) represent the final set of the governing equations. The next
step is the determination of the numerical solution to these governing equations subject to the

initial and boundary conditions given below.

4.5 Boundary And Initial Conditions

t<0,U=0,V=0,60 = 0, everywhere

t=>0,U=0,V=0,0=0,atz—> o

U=1V=0,0=1atz=0

4.6. Explicit Finite Difference Scheme
The explicit finite difference scheme is employed in the solution of these governing equations
(4.59), (4.60) and (4.61) since they are highly non-linear. The mesh shown in figure 3.1 and the

equivalent Finite difference Scheme for these governing equations are respectively given as:

Uj+n=Yap Uirip=Yap _ ( Ut+1p=2Uap +U (i—l,j)) ‘ (U(i+1,j> - U(i,j))z
AL + V(l']) Ay = (22)? + 0.32iAz e +
Ut n=2Ucq i+ Uicin\ (Ucisrn = Udii mV = U i
1 2 (ZG+1)) @ (1—1.1)) ( @i+1.)) (t.})) . 2 ( (5)) (l.]))
0.32(i6z)? e . + 61, + M? (L (4.62)
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Vaj+n~=Van Vitup=Vap _ ( Var,p=2Vap + V(t—l.j)) / (V(t+1.j) - V(m)z
At + Vl] Ay = (Az)2 + OSZLAZ Az +

0.32(iAz)> (V(i+1.j>—2V(i,j) + V(i—l,j)) (V(i+1.j) - V(i.j)) +Gro,; + M? (M) (4.63)

(Az)? Az 1+m?2

Pr (G(i,j+1)—0(i,,-) + vV, 9i+1.j—9i.j) - (9(i+1,j)—29(i,j)+9(i—1,j)) n
At » Ay Az2

0.32(i7)% o= f(Ferzn=Zan) (9("“'22_9(”))} (4.64)

In this case, k = 0.4,z = {Az and i and j refer to z and t respectively.
The initial and boundary conditions will now take the form given as:

Uy; =0; Vi; = 0; 6;; = 0 Everywhere forj < 0

LJ

j=0; U;=0;V,;=0; 6, =0Fori=oo (4.65)

Uj=1V,=0;6,=1Fori=0

LJ

The computation for the consecutive grid points for primary and secondary velocitie and

temperature can now be done using the initial and boundary conditions (4.65), that is U(; ;..1),

V(i,j+1) and H(i,]-ﬂ) .

_ Uti+1,) =Y U+1,) 2V + Ud-1,)
Uajny = Uqap + At{ Vop— T ( (22 ) +

/ Uivr,p —U (i,j))z I N2 (U i+~ 20U + U(i—1.j)) (U (i+1) ~ U(i.j))
0.32iAz7 (422 +0.32(iAz) e y + Gro,; +

M2 (mV(i,j)— U(i,j)) } (4.66)

1+m?2
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2
N=Van ( Varip=2Vap + V(i—l.j)) / (V(i+1.j) - V(m)
Ay + 02 + 0.321Az —

Vl' ,
Vijen = Vi + At = Vi =

+0.32(iAz)? (V(i+1,j)—2V<i,j) + V(t—l,j)) (V(m,j) - V(i,j)) + Gré, + M (w)} (4.67)

(Az)? Az 1+m?2

_ Oiv1,j—0ij , 1 [(Ou+1,p=20)*0i-1,))
0ij+1 =0 + At {_ Vij Ay toer [( Az? ) *

0.32(iaz)2 22 {(U(HL]’) - U(i,j)) (9(i+1,j)—9(i,j))} ]} (4.68)

Pr¢ Az Az

4.7 Stability of Explicit Finite Difference Scheme

In order to judge the accuracy of convergence of explicit finite difference scheme, we will
consider at least two or more values of At, for instance 0.0009, 0.001 and other significant
change that may be noticed. If at all instances there is no difference in their values, then the

explicit finite difference scheme is stable and convergent.

4.8 Discussion of Results

Graphical presentation of the numerical results of the discretized governing equations from
MATLAB is done in this section. Various fluid parameters were varied on primary velocity,U,
secondary velocity, V, and temperature,d, profiles and then discussed. In all these simulations,
for both positive and negative Grashof numbers; Pr; = 0.85 and K = 0.4, where K is von

Karman constant and Pr; is the turbulent Prandtl number.

4.8.1 Cooling of the Plate
In this case the fluid flow is at alower temperature than the plate itself. This is implied by the

positive Grashof number (Gr > 0), therfore the plate loose heat to the surrounding.
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Figure 4.2: Primary velocity profile for Hall current

From this figure, it can be shown that Hall current has little significance to primary velocity.

However, primary velocity decreases with decrease in Hall parameter. This may be attributed to
the fact that for a small value of m, the term ﬁ will in turn increases the resistive force of the

applied magnetic parameter thus reducing the primary velocity.
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Figure 4.3: Primary velocity profile for Magnetic parameter

Figure 4.3 clearly shows that primary velocity decreases with increase in magnetic parameter.

Magnetic parameter, M, refers to the ratio of the magnetic force to inertial force therefore higher
M means higher magnetic force acting perpendicularly on an electrically conducting fluid hence
developing Lorentz force which is an opposing force to fluid motion thus decreasing the primary

velocity.
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Figure 4.4: Primary velocity profile for Prandtl number

Considering figure 4.4, primary velocity decreases with increase in Prandtl number, Pr, though
in a smaller extent. This is because increased Prandtl number leads to increase in viscosity

making the fluid more thick thus leading to a decrease in primary velocity.
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Figure 4.5: Secondary velocity profile for Hall parameter

Figure 4.5 shows a significant decrease in secondary velocity with decrase in Hall parameter,m.

1

— will

Considering the model equation, and the fact that for any value of m, in the term

decrease the negative value of M2 which will in turn decrease the secondary velocity. The
decrease in the negative value of M? means an increase in magnetic force in an electrically

conducting fluid thus developing Lorentz force which opposes fluid motion.
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Figure 4.6: Secondary velocity profile for magnetic parameter

From figure 4.6, it is observed that secondary velocity was increased first at the beginning but
later was decrease with an increase in magnetic parameter, M. This is because at the beginning,
Lorentz force decelerated the primary velocity but increased the lateral flow which in this case is
the secondaey velocity. The secondary velocity later decreased with increase in magnetic

parameter because of the reduction of the magnetic force by the Hall current.
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Figure 4.7: Secondary velocity profile for prandtl number

Clearly, figure 4.7 depicts a decrease in secondary velocity with an increase in Prandtl number.

This is due to increased viscosity of the fluid hence decreasing the secondary velocity.
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Figure 4.8: Temperature profile for Hall parameter

Figure 4.8 clearly shows that there is no significant change in temperature as the Hall parameter
is varied. However, the small change shows that the temperature, 8, of the fluid flow decreases

with decrease in Hall parameter.
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Figure 4.9: Temperature profile for magnetic parameter

From figure 4.9, it shows there is no significant temperature change with variation in magnetic
parameter. However, the small change indicates that there is a decrease in temperature profile

with increase in magnetic parameter.
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Figure 4.10: Temperature profile for Prandtl number

Figure 4.10 shows that there is a decrease in temperature profile with an increase in prandtl
number . since prandtl number is the ratio of momentum diffusivity to thermal diffusivity, thus
increased prandtl number means lower thermal diffusivity in comparison to momentum
diffusivity hence decreasing thermal boundary layer which will in turn decreases the temperature

distribution of the fluid.

4.8.2 Heating of the Plate
The surrounding fluid in this case is at a higher temperature than the plate itself meaning the

plate has a lower temperature. This is shown by the negative values of Gr, that is Gr < 0.
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Figure 4.11: Primary velocity profile for Hall parameter

Considering figure 4.11, decrease in Hall parameter leads to a decrease in primary velocity. This
is because for a smaller value of m, substituted to the term ﬁ will increase magnetic force

which will in turn increases resistive force of the applied magnetic parameter hence decreasing

the primary velocity.
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Figure 4.12: Primary velocity profile for Magnetic parameter

With respect to figure 4.12, primary veocity decreases with increase in magnetic parameter. This
is attributed to Lorentz force generated by a higher magnitude of the magnetic force acting on an

electrically conducting fluid hence decreasing the primary velocity.
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Figure 4.13: Primary velocity profile for Prandtl number

Figure 4.13 indicates that primary velocity decreases with decrease in prandtl number. This is
attributed to the fact that prandtl number being a ratio of momentum(product of unit ofmass and
velocity) to thermal diffusivity , therefore lower prandtl number means thermal diffusivity

dominates momentum leading to a decrease in primary velocity.
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Figure 4.14: Secondary velocity profile for Hall Parameter

Figure 4.14 shows that secondary velocity decreases significantly with a decrease in Hall
parameter,m. This is because for a smaller value of m, the term in ﬁ will have a small impact

in the value of M? as oppose to decreasing magnetic force if there was an increase in m. This

will mean that Lorentz force is maintained at a higher value thus decreasing the secondary

velocity.
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Figure 4.15: Secondary velocity profile for Magnetic parameter

Figure 4.15 illustrates that secondary velocity was accelerated first with increase in magnetic

parameter but later decelerated with an increase in magnetic parameter. This is attributed to the
fact that increase in magnetic parameter leads to a decrease in primary velocity but increase the
lateral flow which is the secondary velocity. However, after some time , the secondary velocity

decreased significantly with increase in magnetic parameter because of the reduction of the

magnetic force by the Hall parameter.
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Figure 4.16: Secondary velocity profile for Prandtl number

Secondary velocity decreases with decrease in prandtl number as shown in figure 4.16. This is
due to the negative Gr. Decrease in Grashof number implies a decrease in buoyancy force which

is responsible for accelerating the fluid motion thus leading to the decrease in secondary

velocity.
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Figure 4.17: Temperature profile for Hall parameter

According to figure 4.17, there is no significance change in temperature when the Hall parameter
is decreased. However, there is anegligible decrease in temperature with decrease in Hall

parameter.
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Figure 4.18: Temperature profile for Magnetic parameter
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Figure 4.19: Temperature profile Prandtl number

From figure 4.19, it clearly indicates a decrease in temperature profile when Prandtl number is
increased. This is attributed to the fact that Pr, being the ratio of momentum diffusivity to
thermal diffusivity means there is lower thermal diffusity in comparison to momentum

diffusivity hence decreasing the temperature profile,6.
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4.9 Validation of results

These results when compared with those of Kwanza et.al (2010) who developed a mathematical
model of turbulent convective fluid flow past an infinite vertical plate with Hall current in a
dissipative fluid and found out that an increase in Hall current leads to an increase in velocity
profiles. These results are in agreement with the findings of this research. Comparison also with
Mukuna et.al (2020) who modeled a Hydromagnetic free covection turbulent fluid flow over a
vertical infinite plate using turbulent prandtl number. They found out that there is an increase in
primary velocity whenever magnetic parameter is decreased, Hall parameter is increased and
when Grashof number is increased. It was also evident that secondary velocity increases when
magnetic parameter is decreased and decreases when Hall parameter is increased. They also
found out that temperature profile decreases when magnetic parameter is decreased, decreases
when Hall parameter is increased and also increases when prandtl number decreases. These

results also agree with the findings of this research.
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CHAPTER FIVE

SUMMARY,CONCLUSIONS AND RECOMMENDATIONS

5.1 Introduction

In this chapter, the summary of the findings are made based on the objectives of the study which
is the modeling and analysis of magnetohydrodynamic free convection turbulent fluid flow past
an infinite vertical porous plate. Conclusions are made based on the research findings and

recommendations are suggested for further research.

5.2 Summary

The study sought to model and analyze magnetohydrodynamic free convection turbulent fluid
flow past an infinite vertical porous plate. The Explicit Finite Difference Scheme was used to
solve the problem. The developed model proved to be working and the result analysis showed

that the findings are in line with the objectives.

5.3 Conclusions

The modeling and analysis of magnetohydrodynamic free convection turbulent fluid flow past an
infinite vertical porous plate investigated numerically. The effects of flow parameters like
Grashoff numbers,Gr, Prandtl number,Pr, magnetic parameter, M, and Hall parameter, m, on
mean primary velocity, U, secondary velocity, V, and temperature profile, 6, obtained. In each

case, P, = 0.85, and K = 0.4. The results are summarized as follows:

a) A mathematical model that is working developed for a MHD fluid flow using
conservation of mass, energy and momentum equations for a flow that is turbulent and

past a vertical infinite porous plate.
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b) The partial differential equations associated with the model were numerically solved
using the explicit finite difference scheme and the graphical presentations of velocities
and temperature profiles given.

c) The velocities and temperature profiles for various flow parameters were analyzed and it
was found that:

)] During both the cooling and heating of the plate (Gr > 0, and Gr < 0), the primary
velocity decreases with decrease in Hall parameter,m, and increase in magnetic
parameter, M. It also decreases during cooling of the plate as the Prandtl number, Pr,
is increased and even during the heating of the plate as the Prandtl number, Pr, is

decreased.

i) During both the cooling and heating of the plate (Gr > 0, and Gr < 0), the secondary
velocity decreases with decrease in Hall parameter, m, and increase in magnetic
parameter, M. It also decreases during cooling of the plate as the Prandtl number, Pr,
is increased and also during heating of the plate as the Prandtl number, Pr, is
decreased.

iii) There is NO significant effect on temperature profile, 6, during both cooling and
heating of the plate as the Hall parameter, m, is decreased. There is also NO
significant change during the cooling of the plate as the magnetic parameter, M, is
increased and even during the heating of the plate as the magnetic parameter, M, is
decreased.

There is decrease in temperature profile when Prandtl number, Pr, is increased in

both the cooling and heating of the plate.
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5.4 Recommendations

The following recommendations are made based on these findings:

1) Adoption of the MHD model due to its significance in the field of medicine,
engineering and technology as well as security sector. This will inform the progress
of development in our society and the country at large.

i) The use of explicit finite difference scheme for the solution of PDEs that are highly
non-linear because of its level of accuracy since it is stable and convergent.

iii)  The use of flow parameters like Prandtl number, Grashof number, Hall parameter,
magnetic parameter and turbulent prandtl number since it is able to analyze the

velocities and temperature profiles appropriately.

5.5 Suggestions for further Research
There is still alot of research that can be done on MHD turbulent fluid flows therefore the

following recommendations are made to further the research on this topic:

a) Fluid flow that is compressible

b) Considering a cylindrical plate.

c) Considering magnetic field inclined at an angle.

d) Using other methods to resolve turbulent stresses other than Prandtl mixing lenght

hypothesis.
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APPENDICES

Appendix I: MATLAB CODE

function MHD TurbFlow ()

clear all;clc;%close all;

global M m Pr Prt K Gr
z0=0;zInf=6;nz=150;dz=(zInf-z0)/ (nz);
t0=0;tend=1;nt=2000;dt=(tend-t0)/ (nt) ;
z=z0:dz:zInf;

t=t0:dt:tend;

%% parameters specification

M=2; $ 1.5, 2, 2.5;

Pr=3.5; £ 1.7, 3.5, 7;

Gr=-0.5; % -1,-0.5, 0.5, 1

m=0.5; % 0.2, 0.3, 0.5

color="--k' % blue(b)-I,red(r)-I1I,black(k)-III,magenta (m)-IV;
Prt=0.85 K=0.4;

u=zeros (nz,nt) ;v=zeros (nz,nt);theta=zeros(nz,nt);
%% initial and boundary conditions
u(:,1)=0;v(:,1)=0;theta(:,1)=0;%IC

u(l,:)

=1;v(l,:)=0;theta(l,:)=1;%BC at z=0
u(nz, :)=0

;vi(nz, :)=0;theta(nz, :)=0;%BC at z=Inf

%% implememtation of Finite Difference Method
for j=l:nt
for i=2:nz-1

u(i,j+l)=u(i,j)+dt*Uvelocity(u(i+l,j),u(i,j),u(i-
llj)lv(i+llj)Iv(ilj)lv(i_llj)Itheta(ilj)lildz);

v(i,j+1l)=v(i,])+dt*Vvelocity(u(i+l,3j),u(i,j),u(i-
llj)lv(i+llj)Iv(ilj)lv(i_llj)Itheta(ilj)lildz);

theta (i, j+1)=theta (i, j) +dt*Temp (theta (i+l,j),theta(i,j),theta(i-
llj)Iu(i+llj)lv(ilj)Iu(i_llj)Iv(i+llj)Iv(i_llj)lildz);

end
end
%% plotting of the results
figure (1)
mesh(t(2:nt-1),z(2:nz-1),u(2:nz-1,2:nt-1))
figure (2)
mesh(t(2:nt-1),z(2:nz-1),v(2:nz-1,2:nt-1))
figure (3)
mesh(t(2:nt-1),z(2:nz-1),theta(2:nz-1,2:nt-1))
figure (4)
hold on
plot(z(l:nz),u(l:nz,nt),color,'linewidth', 1)
xlabel ('Distance Z');ylabel ('Primary Velocity, U'")
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hold off
figure (5)
hold on
plot(z(l:nz),v(l:nz,nt),color,'linewidth', 1)
hold off
xlabel ('Distance Z');ylabel ('Secondary Velocity, V')
figure (6)
hold on
plot(z(l:nz),theta(l:nz,nt),color, 'linewidth’', 1)
hold off
xlabel ('Distance Z');ylabel ('Temperature, \theta')
%% prescription of the sub-functions
function URHS=Uvelocity (uipj,uij,uimj,vipj,vij,vimj, thetaij, index,dz)
URHS= (- (uipj*vipj-uimj*vimj) / (2*dz) )+ ( (uip]j-
2*uij+uimj) / (dz*dz) ) +2*K*K*index*dz* ( ( (uipj-uimj) / (2*dz))"2) ...
+2*K*K* ( (index*dz) *2) * ((uipj-2*uij+uimj) / (dz*dz) ) * ( (uipj-
uimj) / (2*dz) ) +Gr*thetaij-M*M* (uij+m*vij) / (1+m*m) ;
end
function VRHS=Vvelocity (uipj,uij,uimj,vipj,vij,vimj, thetaij,index,dz)
VRHS= (- (vipj*vipj-vimj*vim]j) / (2*dz) )+ ((vipj-
2*vij+vimj) / (dz*dz) ) +2*K*K*index*dz* ( ( (vipj-vim]j)/ (2*dz))"2) ...
+2*K*K* ( (index*dz) "2) * ((vipj-2*vij+vim]j) / (dz*dz) ) * ((vip]j-
vimj) / (2*dz) ) +Gr*thetaij-M*M* (vij-m*uij) / (1+m*m) ;

end
function
TRHS=Temp (thetaipj, thetaij, thetaimj,uipj,vij,uimj,vipj,vimj, index,dz)
TRHS= (- (thetaipj*vipj-thetaimj*vim]j) / (2*dz) )+ (1/Pr) * ((thetaip]j-

2*thetaij+thetaimj)/ (dz*dz)) ...
—2*K*K* ( (index*dz) ~2) * (1/Prt) * ((uipj-uimj) / (2*dz)) * ((thetaipi-
thetaimi) / (2*dz)) ;
end
end
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Abstract: A mathematical model of a two-dimension magnetohydredynamic (MHDY) free convection fluid flow that is
furimlent and past 3 vertical infinite porous plate is developed The fluid flow is impulsively started to in x~direction.
Flow problem modeled using conservation of momentum, and conservation of enerzy equations. The arising partial
differential equations, which are nonlinear, are solved momerically using explicit finite difference scheme Sinmlation
of the discretized equations is done nsing MATLAB. The impacts of flow parameters on velocites and temperamme
profiles such as Mamnetic parameter (M), Hall parameter (m), and Prandtl mumber (Pr) were examined It is evident
from the results that during the cooling of the plate (Gr > 0], the primary velocity decreases with decrease in Hall
parameter, m, and increase in magmetic parameter, M. It also decreases as the prandtl oumber, Pr, is increased. The
secondary velocity decreases with decrease in Hall parameter, m, and inresse in magmetic parameter, M. It also
decreases as the prandil mumber, Pr is mcreased The results also shows that there is no sigmificant effect on
temperature profile as the Hall parameter is decreased. There is also no sipnificant chanpe as the magnetic parameder is
incressed. It is also evident that there is 2 decrease in temperature profile when the Prandtl mamber is increased.
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L INTRODUCTION

Many researchers have done imvestizations on magmetohydrodynamics which of grest imterest o sdemtists and
enFineers. Several imvestizations both theoretical and experimental have been done in the past in relation to this.
Mukuna et al. (2020) modeled 3 Hydromazsnetic free comvection turbulent fluid flow over a vertical infinite plate using
murblent Prandt] pumber. Vijayalakshmi et al. (2018) did a research on the unsteady electrically transmitting fluid past
an oscillating semi- imfinite vertical plate with wmiform temperature and mass diffusion under chemical reactions.
Odekeye and Akinrinmade (2017) did a MHTD research on mixed comvective heat and mass transfer flow from vertical
surfaces in porous media with Soret and Dufour effects. Loganathan and Eswari (2017) did a research on nafural
convective flow over moving vertical cylinder with temperature oscillation in the presence of porous mediom  They
used the iterative mdiagonal semi-implicit finite difference method Muluns & al (2017Th) analyzed heat and mass
transfer rates of hydromagnetic turbulent flwid flow over an immersed cylinder with Hall corrent

difference scheme Muokuna er al (2017a) researched on hydromagnetic torbulent free convection fimid flow over an
immersed infinite vertical cylinder, modeled their problem wsing conservation equations and later solved the arsing
partisl differential equations wsing finite difference scheme. Eiprop (2017) did a research on an unsteady MHD flow
‘with mass and heat transfer in an incompressible, viscous, Newtonian and electrically conducting fhind past a vertical
porous plate with consideration of chemical reaction, thermal radiation and indoced mapnetic field Solotion of
Foverning equations were done using fimite difference scheme, that is the Crank- Nicholson method Seth of al. (20146)
smudied on the effects of an unsteady free convection flow past an impulsively moving porous werfical plate with
HNewtonisn heating. Chebos er al. (2016) investizated an umsteady MHD free comvection flow past an oscillating
vertical porous plate with oscillatory heat flox It is worth noting that despite of all these, MHD turbmolent fluid flow has
received little attention as expected.

The main objective of the present research is o stody a two-dimensional hydmo mammetic free comvective flow of an
incompressible viscous and elecirically conducting fluid flow that is mrbuolent and past a vertical infimite porous plate
nsing 8 mathematical model It is evident from the resnlts that during both the cooling and Heating of the plate (Gr =
0 and Gr < 0), the primary velocity decreases with decrease in Hall parameter, m, and increase in magnefic parameder,
M. Tt also decresses during cooling of the plate as the prandt] oumber, Pr, is ncressed and even during the heating of
the plate as the prandtl mmmber, Pr, is decreased For Gr > 0 and Gr < 0, the secondary velocity decreases with
decrease in Hall parameter, m, and increase in magnetic parameter, M. It also decreases during cooling of the plate as.
the prandtl pumber, Pr is inceased and also during heating of the plate as the prandd mamber, Pr is decreased. The
results also shows that there is WO significant effect on temperstore profile during both cooling and heating of the plate
as the Hall parameter is decreased There is also MO significant chanpe during the cooling of the plate as the magnetic
parameter is increased and even during the heating of the plate 3 the magnetic parameter is decreased. It is also evident
that there is a decrease in temperature profile when the Prandt]l mumber is increased in both the cooling and Heating of
the plate.

IL MATHEMATICAL MODEL
A two-dimensional flow is considered in this stady. The infinite vertical porous plate is taken to be along the x-axis and
the y-axis taken to be on the horizomtsl wheress the z-awis normal to the plate. The fluid being considered is

incompressible and viscons. A magpetic feld of a high magnitmde H, is applied perpendicularty to the divection of flow
of the fhoid It is asswmed that the indoced magnetic field is negligible therefore H = (0,0, H,) as indicated in the

diagram below. At time t*>=0, the floid is stationary and the plate starts to move impulsively in its plane with velocity

S ARISET This work is licensed under a Creative Commens Atiribution 40 International License 4%
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1 and the temperanhme of the plate raised instantly to T:mﬂmmhmdcomnhumm schematic diapram for
the fluid flow is as given below:
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Figure 1: Schematic diagram for the fhrid flow.

The flow is therefore governed by the following equations:

Ut u(5R) — S tee s m
Evri-o(E H*H @
T ﬂ'

V5= E{ F} - e

Where L2 :ﬁ is the kinematic viscosity

o is the flnid density
> 0:U0°=0,1=0,T"=T; everywhere (4a)
t" 0 =0,V=0,T=T,; at=0; (48)
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=, V' =0T 5T) asz— @ (4c)

_I"J.I': _ _ ¥y o ¥ _Tr=-T
t= o s = U :T_ = H_u,,’v—un’ _'I":,—'I".,';
vaRTe, = T ™ =T P
= = — =
e T

The shove poverning equations and boundary conditions becomes:

au o _ iy SEW Miimb— )

;"-Va_y_[::rﬁu} = or8 + 1 +me) )

aw av _ @y TR NHmU+Y)

xtVa=la w T )
a8 gy &y _ p J@T

Br(z +vs)= (53) —Pr5; @

t< 0,U=0, V= 0,8 = 0, everywhers (8a)

t=0,U=0,V=0,8=0,atz > [ia]

F=1,v=08=1Laz=0 (c)

o FRANDTL MIXING LENGTH HYFOTHESIS

It is not possible to sobve these equations due to the existence of the Feynolds stresses oW and 7w in equations {3) and
(&) respectively, therefore the need to adopt the Boussinesque approximation

T=—pur= A ™

= 5
It is worth noting, that A, is not a fluid property as g but depends on mesn velocityll. Om the other hand, puv stands for
fhox of x- momentum in the y-direction, which is assumed that this momenium was transporied by eddies which moved
in the y-direction over a given distance say |, with no interaction and then mixed with the existing fluid at the new
location i.e momentum is taken to be conserved over distance |, (McComb, 1900).
Prandt]l was able to deduce experimentally that:

— 3 2
pww = —pl* (35) an
At this level more sssumptions are tsken as follows:
0 ¥* = 5, viscous term in shear stress is neglacted.
i) L = ky, where k is the karman constant given as k = 0.4, McComb, (1990).

Om substinnting]?, it vields

w= -k [ﬂ}ﬂ an

g2 (%T 1z

W =
And
—_ ar
ww = —k?s? (Z) a3
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Pr,= ™ gheree, = —2k2z2 20
ar

Thms,

It cam be deduced from (11) that T = —oai 2028

ey Ordr

a4

It can now be shown that equations (11),(12), (13) and (14) can yield the following set of differentisl equations as:

X +vi= (22) +2x2 [:‘“‘} +2232 (22) (2) + 6ro +—‘-—n’:“"";]'” s)
» »”

:+V"" (=) +2k*z[‘”:] +2its? (L) () -l as)

P +vE)= (2 (5D an

Iv. EXFLICIT FINITE DIFFERENCE SCHEME
The explicit finite difference scheme is employed in the solution of these governing equations (15), (14) and (17) since
they are highly non-linear. The approximations of these poverning equations using the Finite difference Scheme are
respectively given where
In thizs case, k = 04, £ = Az and 1 and j refer to £ and t respectively.
The initial and boundary conditicns will now take the form given as:

Uy =0; ¥y = 0; 8; = 0 Everywhere for 8 < 0 {18a)
Hzﬂj%:ﬂjl’u:ﬂ;ﬂU:lFﬂri:ﬂ (185)
;=1 I’u:ﬂ;ﬂU:ﬂFm'i:m (18c)

The computstion for the consecufive grid points for primary and secondary velecite and tempersiure can now be done
using the mitisl and boundary conditions i.e:

Uy oy VirjonyAnd 6
ey Vigea iwjen)
Upea iU p ygyq n=20gen * By ) co Wi g = Uiy
Uggony =Upp+ a.r.{ Vo +( — ]| + 0.32iAz (el WD) 4

v =2 + U [T .
0.32({as)? (<Al ueal) (el + Gre + M? (FSAAL) as
— _ Frisady=Viip Vitaa,h=2¥p p *V:b—-.n F:hs_.ﬂ =Wl py
Vo = Vup + 8 —Vyp——p— + |: e :I+ u-.szu:.x{ }

+0.32(iAz)? (Vla+1.n'*::}zn* "'ln-u:'] {"'IH:...H "un} + Gréy + Hi{""'l =t fup }} 20)

ar
Bugor =+ B[ L L (R g a2 (s~ (gt} )
ay

1
Pr
V. DISCUSSION OF RESULTS
For physical understanding of the problem and discussion of results, mumerical simulation has been mm for velocity and
temperatore profiles. Graphical presentation of the numerical results of the discretized Foverning equations from
MATILAB is given Vanioos fluid parameiers were vaned on primary wvelocity,U, secondary welocity, V, amd
temperatre 8, profiles and then discussed. The effects of flow parameters including Grashoff oombers, Gr, Pramdil

mumber, Pr, magnetic parameter, M, and Hall parameter, m, on mesn primary velocity, I, secondary velocity, V, and
temperature profile, &, obtained. In each case, F, = 0.85, and K = 0.4.

From figure 2, it can be shown that Hall current has Little siznificance to primary velecity. However, ]:rj:m.ryrelm:ity
decreases with decrease in Hall parameter. This may be atiributed to the fact that for a small value of m, the term

will in tom increases the resistive force of the applied magmetic parameter this reducing the primary velocity.
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Figure 3 clearly shows that primary velocity decreases with increase in magnetic parameter. Magnetic parameter, M,
refers to the ratio of the magnetic force to inertial force therefore higher M means hipher magnetic force acting

perpendicularly on an elecinically conducting fhoid hence developing Lorentr force which is an opposing force to fhoid
motien thus decreasing the primary velecity.

Considering figure 4, primary velocity decreases with increase in Prandfl pumber, Pr, though in 8 smaller extent. This
is becanse increased Prandi] mumber leads to inresse in viscosity making the fluid more thick thus leading o a
decrease in primary welocity.

Hmishmaﬂpﬁtmmehmmm%thﬂmmmmm
eqmmn,mﬂﬂmfactﬂmtformymhofm,mﬂmmm: will decrease the negative vale of M2 which wdill in
fum decrease the secondary velocity.

It can also be clearly shown From figure 6 that secondary welocity was increased first at the beginning bt later was
decrease with an increase in magnetic parameter, M. This is becamse at the beginning, Lorentz force decalerated the
primary velocity at increased the lateral flow which in this case is the secondaey velocity. The secondary velocity
later decreased with increase in magnetic parameter because of the reduction of the mapnetic force by the Hall current.
Clearly, figure 7 depicts a decresase in secomdary velocity with an increase in Prandt]l oomber. This is due to increased
viscosity of the fluid hence decreasing the secondary velocity.

Figure § clearly shows that there is no significant change in tempersture 3s the Hall parameter is varied. However, the
small change shows that the temperature, &, of the finid flow decreases with decrease in Hall parameter.

From figure 9, it shows there is no significant temperature change with varistion in magnetic parameter. However, the
small change indicates that there is a decrease in temperatore profile with increase n mapnefic parameter.

Figure 10 shows that there is a decresse in temperature profile with an increase in prandst] muomber . since pramdtl
mumber is the ratio of momentm diffucivity to thermal difesivity, thus incressed prandt] number means lower thermal
diffusivity in comparison to momentum diffosivity hence decreasing thermal boundsry layer which will in fum

K

[k \

1 |Il|
= o
ot i
o il ".
Hon] W
P " |
[l [
# s || .II '\.l' _

o III .__. ""\ B

[
(B l'l.ll‘:.‘;
i, h
S I
0 —me T
1 ¢ B 4 = 3 L £ E
Cizzanme I Ciulianee: 2
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VL VALIDATION OF RESULTS

Cror resulis when compared with those of KEwanza etal (2010) who developed 2 mathematical model of morbulent
convective finid flow past an infinite vertical plate with Hall current in a dissipative fluid and found owt that an increase
in hell current leads o an increase in velocity profiles. These results are in azreement with our results. Comparison also
with Muluma et al. (2020} who modeled a Hydromaznetic free convection turbulent fluid flow ower a vertical infimite
plate using torbulent Prandi] oumber. They found out that there is an increase in primary velocty whenever magnetic
parameter(M) is decreased Hall parameter increased and when Grashoff momber is moreasad.

It was also evident that secondary velocity inTeases when magnetic parameter (M) is decreased and decreases when
Hall parameter is increased They also found out that temperature profile decreases when magnetic parameter (W) is
decreased decreases when Hall parameter is inreased and also increases when Prandtl oomber decreases. These results
also agree with the findings of this paper.

VIL CONCLUSION

The method of sohsfion used in this paper which is explicit fimite differemce scheme has made it possible to
approximeabe the solution o the hizhly non linear partial differential equations. The sinmlation was done using
MATTLAR and the discussed resuolts are summarised as:

i Dring the cooling of the plate (Gr = 0,), the primary velocity decreases with decrease in Hall parameter m,
and incresse in magnetic parameter, M. It slso decreases as the Prandt] oumber, Pr, is increased.

i) Dmring the cooling of the plate (Fr = 0,), the secondary velocity decreases with decresse in Hall parameser,
m, and increase in magnetic parameter M. It also decreases as the Prandt] oumber, Pr, is increased.

i) There is no significant effect on temperature profile, 8, during the cooling of the plate as the Hall parameter,
m, is decreased There is also no significant change as the magnetic parameter, M, is increased There is decrease in
temperatre profile when Prandt] mumber, Pr, is increased.
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