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ABSTRACT 

Magnetohydrodynamic (MHD) as an important field of study has developed over several years 

since its first experiment by Michael Faraday in 1832. The study is very significant in a number 

of ways including Biomedical sciences, engineering, Geophysics, astrophysics, Power generation 

among many others. There has been challenges of communications, security, power electric 

outages, medical issues among many others that need to be addressed. In this study, two 

dimensional hydro magnetic free convective flow of an incompressible viscous and electrically 

conducting fluid flow that is turbulent and past a vertical infinite porous plate is considered. The 

effect of induced magnetic field arising as a result of fluid motion that is electrically conducting is 

also taken into account. A mathematical model of MHD free convection fluid flow that is turbulent 

and past a vertical infinite porous plate is developed. The flow is impulsively started after which 

the analysis of the flow problem is carried out and modeled using conservation of mass, 

conservation of energy and conservation of momentum equations. The arising nonlinear partial 

differential equations are then solved using the explicit finite difference scheme. Obtained results 

are presented graphically and the effects of flow parameters on velocities and temperature profiles 

discussed. Many researchers have done investigations on magnetohydrodynamics but in spite of 

all these, fluid flow that is turbulent past a vertical infinite  porous plate has not received much 

attention. Little has been done on the porous media and other non- dimensional parameters for a 

turbulent flow past a vertical infinite porous plate. Simulation of the discretized equations were 

done using MATLAB. The impacts of flow parameters on velocities and temperature profiles such 

as Grashof number (Gr), Magnetic parameter (M), Hall parameter (m), Prandtl number (Pr) and 

Turbulent prandtl number(𝑃𝑟𝑡) analyzed. It is evident from the results that during both the cooling 

and heating of the plate (𝐺𝑟 > 0 𝑎𝑛𝑑 𝐺𝑟 < 0), the primary velocity decreases with decrease in 

Hall parameter, 𝑚, and increased magnetic parameter, 𝑀. It also decreases during cooling of the 

plate as the Prandtl number, 𝑃𝑟, is increased and even during the heating of the plate as the Prandtl 

number, 𝑃𝑟, is decreased. For  𝐺𝑟 > 0 𝑎𝑛𝑑 𝐺𝑟 < 0, the secondary velocity decreases with 

decrease in Hall parameter, 𝑚, and increase in magnetic parameter, 𝑀. It also decreases during 

cooling of the plate as the Prandtl number, 𝑃𝑟 is increased and also during heating of the plate as 

the Prandtl number, 𝑃𝑟 is decreased. The results also shows that there is no significant effect on 

temperature profile during both cooling and heating of the plate as the Hall parameter is decreased. 

There is also no significant change during the cooling of the plate as the magnetic parameter is 

increased and even during the heating of the plate as the magnetic parameter is decreased. It is also 

evident that there is a decrease in temperature profile,𝜃, when the Prandtl number is increased in 

both the cooling and Heating of the plate.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Overview 

In this chapter, the history of Magnetohydrodynamics (MHD) in connection with the concept of 

free convection fluid flow is discussed together with the description of the terms that are used. 

Statement of the problem is also given together with the objectives, significance of the study and 

the assumptions made. 

1.2 Background of the study 

MHD has developed over so many years after its first experiment by Michael Faraday in 1832. 

However, turbulent fluid flow in MHD remains one of the unresolved areas in engineering, 

astrophysics, geophysics and medicine. The fundamental concept of MHD is that magnetic fields 

can induce currents in a moving fluid that is electrically conducting, Kwanza et al (2010). The 

particles of this fluid can move from one point to another whenever there is difference in heat 

energy. Particles with a lot of heat energy in a fluid will always move and take the place of a 

fluid with less heat energy because particles in a fluid move faster when heated than when they 

are cold resulting to convection. Fluid flows are either turbulent or laminar but turbulent fluid 

flow is of interest in this study.

1.2.1 Fluid dynamics concepts 

Convection is therefore mechanism of heat transfer through a fluid in the presence of bulk fluid 

motion. Convection can either be forced or free. Forced convection occurs when a fluid is forced 

to flow by an external force. Free convection on the other hand occurs when the fluid flow is 

initiated by buoyancy forces. In this case, there exist density gradient between materials as a result 
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of buoyancy forces. When a fluid density remains constant throughout the flow, the fluid is 

considered to be incompressible or referred to as Newtonian fluid. When the fluid density varies 

in the flow, the fluid is compressible or referred to as non- Newtonian fluid. 

Fluid flow can be categorized as either laminar or turbulent. Laminar flow is always characterized 

by complete orderliness of fluid particles for instance when oil or honey is poured into a container. 

Turbulent flow on the other hand is characterized by fluctuation in velocity or pressure quantities 

for instance flow through turbines or flowing water through a tap with high pressure. In free 

convection flows, Grashof number,𝐺𝑟, is important in that flows with  𝐺𝑟 >109 are turbulent while 

those in the range of 103 < Gr< 106 are considered laminar, (Holman, 2010). 

Reynolds number, Re, is a parameter which determines whether a fluid flow is laminar or turbulent. 

Low Re indicates laminar flow while a high Re indicates turbulent flow. Since fluid flow that is 

turbulent is of interest in this case, these parameters are great of great significance. 

A streamline refers to a continuous line within a fluid such that the tangent at each point is the 

direction of the velocity vector at that point. It is a curve c that is drawn in the flow field such that 

the fluid velocity is along the direction of the tangent of the curve. A fluid flow is described as 

steady fluid flow when the velocity at each point is independent of time and the flow pattern is the 

same at each instant. It is referred to as unsteady fluid flow when the flow pattern is time 

dependent, therefore flow pattern varies at each instant. A path line refers to the trajectory of an 

individual element of a fluid. Thus, the streamlines show how all particles are moving at a given 

instant while path lines show how a given particle is moving at each instant. Therefore, when the 

motion is steady, the path lines coincide with the streamline. 
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Porous medium on the other hand is a permeable solid with a network of interconnected pores that 

is filled with fluid (liquid or gas). The network of pores is assumed to be continuous as it is for the 

case of a sponge. Some of the examples of porous materials are rocks, bones, soils, cement slabs, 

ceramics, foam among many others.  

Considering magnetic field effect on fluid flow, it is important to understand the physical 

mathematical framework that concerns the dynamics of magnetic fields in electrically conducting 

fluids that is referred to as magnetohydrodynamic (MHD). It is the field of study which takes into 

consideration the properties of electromagnetism and fluid mechanics to describe the flow of 

electrically conducting fluid, (Kwanza 2010). 

Considering the law of electromagnetism, any conductor moving within a magnetic field generates 

an electric current known as Hall current. A magnetohydrodynamic free convection fluid that is 

turbulent and past an infinite vertical porous plate is studied considering the Hall current and 

discussing the impacts of non-dimensional parameters on velocities and temperature profiles.  

1.3 Statement of the problem 

Among the several research investigations, the combined effects on free convection, turbulence, 

and porous medium to the MHD flow on an infinite vertical plate has not been done in one study 

hence the motivation to carry out this research. This study is on modeling and analysis of 

magnetohydrodynamic free convection turbulent fluid flow past a vertical infinite porous plate.  
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1.4 Objectives of the study 

1.4.1 General objective 

To Model and analyze a MHD free convection fluid flow that is turbulent past a vertical infinite 

porous plate with Hall current and the effects of non- dimensional parameters on velocities and 

temperature profiles discussed. 

1.4.2 Specific objectives 

i) To develop a mathematical model using the conservation of mass, conservation of energy 

and conservation of momentum equations considering a fluid flow that is turbulent and 

past a vertical infinite porous plate. 

ii) To solve numerically, the partial differential equations arising from the developed 

mathematical model.  

iii) To analyze the effect of changes in the non- dimensional parameters on the velocity and 

temperature profiles of the fluid. 

1.5 Significance of the study 

This research will be applicable in a number of ways including Biomedical sciences, engineering, 

geophysics, astrophysics among many other applications as discussed below: 

i) MHD has its significance in the field of medicine such as magnetic drug targeting which is a 

precise way of administering drugs to the affected area. This is very important in cancer research. 

It is also useful in magnetic devices for cell separation, adjusting blood flow during surgery, 

transporting bio- waste fluids among many other uses. 

ii) MHD has its significance in the field of engineering including electric power generation, 

electromagnetic pumping and propulsion and control of moving molten metals 
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It is also significant in developing space weather forecasting capability which is important for safe 

operation of manned spacecraft and a variety of communications, global positioning, and defense 

satellite systems as well as for protection against geometrically- induced electric power outages 

on earth. 

iii) It is worth noting that MHD is also significant in the study of the earth’s surface which 

comprises of the inner and the outer core containing a significant amount of iron. The outer core 

which is liquid in nature moves in the presence of magnetic field leading to the formation of eddies 

due to Coriolis Effect affecting the earth’s magnetic field. 

iv) MHD is very useful in describing astrophysical systems. These are in most cases in an unstable 

local equilibrium therefore requires kinematic consideration for their description within the 

system. For instance the sunspots result from the sun’s magnetic field. 

1.6 Assumptions 

The following assumptions are made in this research: 

i) The fluid taken into consideration is incompressible 

ii) There are no chemical reactions or contaminants in the fluid 

iii) There is no external electric field 

iv) The fluid flow is non- relativistic.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

A lot of research has been undertaken in MHD therefore literature related to turbulent fluid flow, 

vertical infinite plate and the effects of non-dimensional parameters are reviewed in this chapter. 

Knowledge gap also identified. 

2.2 Review of related literature 

Mukuna 𝑒𝑡 𝑎𝑙. (2020) modeled a Hydromagnetic free convection turbulent fluid flow over a 

vertical infinite plate using turbulent Prandtl number. They found out that there is an increase in 

primary velocity whenever magnetic parameter(M) is decreased, Hall parameter increased and 

when Grashoff number is increased. It was also evident that secondary velocity increases when 

magnetic parameter (M) is decreased and decreases when Hall parameter is increased. They also 

found out that temperature profile decreases when magnetic parameter (M) is decreased, 

decreases when Hall parameter is increased and also increases when Prandtl number decreases.  

Vijayalakshmi et al. (2018) did a research on the unsteady electrically transmitting fluid past an 

oscillating semi- infinite vertical plate with uniform temperature and mass diffusion under 

chemical reactions. They realized that heat transfer progress is enhanced with the oscillating 

frequency, Prandtl number and thermal Grashof number. 

Odekeye and Akinrinmade (2017) did a MHD research on mixed convective heat and mass transfer 

flow from vertical surfaces in porous media with Soret and Dufour effects and found out that an 

increase in magnetic field leads to a decrease in velocity and increase in temperature. 
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Loganathan and Eswari (2017) did a research on natural convective flow over moving vertical 

cylinder with temperature oscillation in the presence of porous medium. They used the iterative 

tridiagonal semi-implicit finite difference method. Their results showed that whenever the 

permeability parameter increases, there was a corresponding increase in velocity and boundary 

thermal layer and decrease in concentration layer. 

Mukuna et al. (2017b) analyzed heat and mass transfer rates of hydromagnetic turbulent fluid flow 

over an immersed cylinder with Hall current. They modeled the flow using conservation equations 

and solved the arising partial differential equations using finite difference scheme. They concluded 

that increasing the hall parameter increases the velocity profiles while an increase in magnetic 

parameter leads to an increase in temperature and concentration profiles. 

Mukuna et al. (2017a) researched on hydromagnetic turbulent free convection fluid flow over an 

immersed infinite vertical cylinder, modeled their problem using conservation equations and later 

solved the arising partial differential equations using finite difference scheme. They found out that 

whenever the Hall parameter was increased, there was a corresponding decrease in secondary 

velocity while the primary velocity profile was not affected due to turbulence. 

Kiprop (2017) did a research on an unsteady MHD flow with mass and heat transfer in an 

incompressible, viscous, Newtonian and electrically conducting fluid past a vertical porous plate 

with consideration of chemical reaction, thermal radiation and induced magnetic field. Solution of 

governing equations were done using finite difference scheme, that is the Crank- Nicholson 

method. His findings shows that velocity decreases with increasing magnetic parameter (M) and 

also decrease in concentration with increasing Schmidt number and chemical reaction. 
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Seth et al. (2016) studied on the effects of an unsteady free convection flow past an impulsively 

moving porous vertical plate with Newtonian heating and found out that fluid flow in both the 

primary and secondary flow directions are accelerated by the hall current, permeability of the 

medium, thermal buoyancy force, Newtonian heating and thermal diffusion throughout the 

boundary layer region while magnetic field tend to retard the fluid flow and together with hall 

current tend to increase the secondary skin friction. They also showed that thermal buoyancy force 

and thermal diffusion tend to increase the secondary skin friction. Newtonian heating tends to 

reduce primary skin friction but increase secondary skin friction. 

Chebos et al. (2016) investigated an unsteady MHD free convection flow past an oscillating 

vertical porous plate with oscillatory heat flux and found out that there is velocity increase with 

decrease in suction parameter and magnetic parameter and increase with increase in Darcy number. 

They also found out that temperature increases with decrease in Prandtl number and increase with 

increase in radiation parameter and suction parameter. 

Umameheswar et al. (2016) did numerical investigation of MHD free convection of non-

Newtonian fluid past an impulsively started vertical plate in the presence of thermal diffusion and 

radiation absorption. Their results show that increasing magnetic field parameter decreases the 

velocity. 

Vishnu et al. (2016) studied hydromagnetic asymmetrical slip flow over a vertical stretching 

cylinder with convective boundary on a viscous fluid and used Runge- Kutta method to solve the 

arising partial differential equations. They found out that whenever the velocity-slip increases and 

Prandtl number decreases, the normal boundary layer thickness increases. 
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Rajesh et al. (2016) investigated finite difference analysisof unsteady MHD free convective flow 

over a moving semi-infinite vertical cylinder with chemical reaction and temperature oscillations. 

They solve the arising partial differential equations using the Crank- Nicolson finite difference 

scheme and found out that their results were in agreement with available computations and 

literature. 

Ravi and Sambasiva (2016) studied bouyancy induced natural convective heat transfer along a 

vertical cylinder under constant heat flux and were able to show that temperature of both cylinder 

and fluid increases along axial direction and decreases along radial direction. 

Deka et al. (2015) researched on transient free convection flow past a vertical cylinder with 

constant heat flux and mass transfer and concluded that velocity and temperature increases 

significantly with time and that at larger times, concentration approaches steady state. 

Massoud et al. (2015) studied the effect of magnetic field on free convection inclined cylindrical 

annulus containing molten potassium and found out that increasing magnetic field leads to a loss 

of symmetry and shape of isotherms. 

Mayaka et al. (2014a) investigated a MHD turbulent fluid flow past a vertical porous plate and 

solved the governing equations using finite difference scheme and Prandtl mixing length theorem 

was used to handle turbulence.  He found out that the Hall current,Joules’s heating and mass 

transfer had effects on primary and secondary velocity, and also concentration and temperature 

profiles.  

Kwanza et al. (2010) worked on a mathematical model of turbulent convective fluid flow past an 

infinite vertical plate with Hall current in a dissipative fluid and found out that an increase in hall 

current leads to an increase in velocity profiles. 
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Sarris et al. (2010) explained magnetic field effect on the cooling of a low-Pr fluid in a vertical 

cylinder in the presence of magnetic field and found out that magnetic fields has no effect at the 

initial stages of development of the boundary layer. 

2.3 Identification of the Knowledge gap 

In the above review, section 2.2, it can be noticed that indeed a lot of research has been undertaken 

in MHD. However, none has modeled and analyzed fluid flow that is turbulent and past a vertical 

infinite porous plate. 

Kwanza 𝑒𝑡 𝑎𝑙. (2010) developed a model of a turbulent convective fluid past an infinite vertical 

plate with Hall current in a dissipative fluid but did not consider the porous medium. It is also 

noted that Chebos 𝑒𝑡 𝑎𝑙. (2016) investigated MHD free convection flow past an oscillating vertical 

porous plate with oscillatory heat flux but ignored Hall current and a vertical infinite porous plate 

that is not oscillating. 

It is due to this therefore that a mathematical model of a MHD free convection fluid flow that is 

turbulent and past an infinite vertical porous plate is developed. In this study, consideration is 

given to the effect of porous material together with non- dimensional parameters for a fluid flow 

that is turbulent. 
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CHAPTER THREE 

RESEARCH METHODOLOGY  

3.1 Introduction 

The general conservation equations are given in this chapter, which include the conservation of 

mass equation, conservation of momentum equation and conservation of energy equation. Non- 

dimensional parameters that are very significant in this study are also given together with the 

explicit finite difference scheme which is the method of solution used to solve the arising partial 

differential equations. 

3.2. Conservation Equations 

Fluid flow in fluid dynamics can be described using the conservation equations based on the 

conservation laws which include the law of conservation of mass, the law of conservation of 

momentum and the law of conservation of energy. These laws give rise to the conservation 

equations which include: 

i) Continuity equation 

ii) Navier- Stokes equation 

iii)  Energy equation 

Each of them is discussed below: 

3.2.1 Continuity Equation 

This equation is also referred to as conservation of mass equation. It is based on the principle of 

conservation of mass, which states that the mass of a body can neither be created nor destroyed. 

This is given as: 
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0
dm

dt
=                                                                                                                             (3.1) 

Where 𝑚 is the mass 

Edward et al. (2005) derives continuity equation and gives: 

𝜕𝜌

𝜕𝑡
+ ∇.⃗⃗⃗   (𝜌𝑢⃗ )= 0                                                                                                      (3.2) 

Where,     

    ∇⃗⃗ =  
𝜕

𝜕𝑥
𝑖̂ +  

𝜕

𝜕𝑦
𝑗̂ +  

𝜕

𝜕𝑧
𝑘̂                                                                                                       (3.3) 

Continuity equation can be given in other forms which include; 

𝜕𝜌

𝜕𝑡
 + 𝑢⃗ . ∇⃗⃗ 𝜌 + 𝜌∇⃗⃗ . 𝑢⃗ = 0                                                                                          (3.4) 

Where 𝑢⃗ . ∇⃗⃗ 𝜌 + 𝜌∇⃗⃗ . 𝑢⃗  in equation (3.4) is the expanded form of ∇.⃗⃗⃗   (𝜌𝑢⃗ )   in equation (3.2). Thus 

the mass conservation equation is given as:   

 
𝑑𝜌

𝑑𝑡
 + 𝜌∇⃗⃗ . 𝑢⃗ = 0                                                                                                                                 (3.5) 

Where (3.5) is obtained by substituting the material derivative 
𝑑𝜌

𝑑𝑡
=

𝜕𝜌

𝜕𝑡
 + (𝑢⃗ . ∇⃗⃗ )𝜌 into (3.4). 

Note that equation (3.2) is commonly used in computational fluid dynamics (CFD). 

For an incompressible fluid, continuity equation in cartesian coordinate system is given as (Edward 

J. S. et al, 2005) 
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0
u v w

u v w
t x y z x y z

   


         
+ + + + + + =   

         
                                                      (3.6) 

Where u, v and w represent the velocity components 𝑥, 𝑦 𝑎𝑛𝑑 𝑧 axes respectively. 

For an incompressible flow, the fluid density is constant therefore 

𝑑𝜌

𝑑𝑡 
= 0 and the continuity equation (3.2) reduces to 

∇⃗⃗ . 𝑢⃗  = 0                                                                                 (3.7) 

In Cartesian coordinates, the continuity equation in incompressible flow is therefore given by: 

0
u v w

x y z

  
+ + =

  
                                                                     (3.8) 

3.2.2. Conservation of Momentum Equation 

This equation is also referred to as Navier-Stoke’s equation (N-S) for a Newtonian fluid. The 

differential equation expressing the law of momentum is given by: 

𝜕(𝜌𝑢⃗⃗ )

𝜕𝑡
 + ∇.⃗⃗⃗   (𝜌𝑢⃗ 𝑢⃗ ) = 𝜌𝑓 + ∇.⃗⃗⃗   𝜎                                                                                         (3.9) 

Where f refers to the sum of body forces and ∇.⃗⃗⃗   𝜎  represents the stress divergence term.  

On expanding the time derivative and divergence terms and rearranging remaining terms we get: 

𝜌 (
𝜕𝑢⃗⃗ 

𝜕𝑡
+ 𝑢⃗ . ∇⃗⃗ 𝑢⃗ ) + 𝑢⃗ [

𝜕𝜌

𝜕𝑡
+ 𝑢⃗ . ∇⃗⃗ 𝜌 +  𝜌∇⃗⃗ . 𝑢⃗ ] =  𝜌𝑓 + ∇⃗⃗ . 𝜎                                       (3.10) 
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The first equation in brackets in the left-hand side of equation (3.10) represents the inertial forces 

per unit volume.  

Since the fluid density is constant, for an incompressible flow, it implies that the term in square or 

closed brackets of continuity equation (3.10) is equal to zero. Thus, equation (3.10) becomes: 

𝜌 (
𝜕𝑢⃗⃗ 

𝜕𝑡
+ (𝑢⃗ . ∇⃗⃗ )𝑢⃗ ) = 𝜌𝑓 + ∇⃗⃗ . 𝜎                                                                                       (3.11) 

Using material derivative 
𝑑𝑢

𝑑𝑡
=

𝜕𝑢⃗⃗ 

𝜕𝑡
+ (𝑢⃗ . ∇⃗⃗ )𝑢⃗ , the differential momentum equation takes the 

form: 

𝜌
𝑑𝑢

𝑑𝑡
= 𝜌𝑓 + ∇⃗⃗ . 𝜎                                                                                                        (3.12) 

Where 𝜌
𝑑𝑢

𝑑𝑡
  represents the inertial force 

𝜌𝑓  represents body force and ∇⃗⃗ . 𝜎 refer to surface force.  

Anderson, (1991) used the definition of stress divergence to give the three components of 

momentum equations in cartesian coordinate system as: 

2 2 2

2 2 2x

u u u u p u u u
u v w f

t x y z x x y z
  

         
+ + + = − + + + +  

                                       (3.13) 

2 2 2

2 2 2y

v v v v p v v v
u v w f

t x y z y x y z
  

         
+ + + = − + + + +  

                                       (3.14) 

2 2 2

2 2 2z

w w w w p w w w
u v w f

t x y z z x y z
  

         
+ + + = − + + + +  

                                       (3.15) 
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Where 𝑢, 𝑣, 𝑤 are the velocity components in the 𝑥, 𝑦, 𝑧 directions, p is the pressure, 𝑓𝑥, 𝑓𝑦, 𝑓𝑧  are 

the body forces components which include Coriolis force, gravity and electromagnetic force in the 

𝑥, 𝑦, 𝑧 directions. In this study we will consider only gravity and electromagnetic forces as the 

body forces. 

3.2.3. Energy Conservation Equation 

This is a scalar equation derived from the principle of thermodynamics. It is based on the first law 

of thermodynamics which states that the amount of heat added to the system is equal to the change 

in the internal energy plus the work done. This is given as: 

𝑑𝑄 = 𝑑𝐸 + 𝑑𝑊                                                                                                                                 (3.16) 

The conservation of energy equation for a Newtonian fluid is given as 

𝑑𝑄

𝑑𝑡
= 

𝑑𝐸𝑇

𝑑𝑡
 + 

𝑑𝑊

𝑑𝑡
                                             (3.17) 

Where 
𝑑𝑄

𝑑𝑡
 is the rate of change of heat  

  
𝑑𝐸𝑇

𝑑𝑡
  is the rate of change of internal energy at constant temperature 

 
𝑑𝑊

𝑑𝑡
 is the work done by the system.    

For an incompressible fluid, the conservation of energy equation is the resultant of the First law of 

Thermodynamics and therefore given as: 

𝜌𝐶𝑝 [
𝜕𝑇

𝜕𝑡
+ ∇⃗⃗ (𝑇𝑢⃗ )] =  ∇⃗⃗ . (𝑘∇⃗⃗ 𝑇) + ∅                                                                                               (3.18)                                                                                
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Where,  

p is the fluid pressure 

c p
 is the specific heat at constant pressure 

k  is the thermal conductivity 

  is the fluid density  

   

∇⃗⃗ =  
𝜕

𝜕𝑥
𝑖̂ +  

𝜕

𝜕𝑦
𝑗̂ +  

𝜕

𝜕𝑧
𝑘̂    

  is the viscous dissipation  given by: 

2 2 22 2 2
2

2
3

u v w v u w v u w u u u

x y z x y y z z x x y z


                        
= + + + + + + + + − + +             

                         

 

         

                                      (3.19)                                                 

𝑢, 𝑣, 𝑤 are velocity components in 𝑥, 𝑦, 𝑧 directions respectively. 

The conservation of energy equation in Cartesian coordinate is therefore given as: 













+




+




=












+




+




+




2

2

2

2

2

2

z

T

y

T

x

T
k

z

T
w

y

T
v

x

T
u

t

T
cp

  +                                         (3.20)                                           

3.3. Turbulence and Time Averaged Equations. 

Conservation equations are transformed to Reynolds averaged equations in order to govern 

turbulent flow. Turbulence result whenever a disturbance is induced in a laminar flow. Deriving 

the Reynolds equations is done by decomposing the dependent variables of the laminar flow of 
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conservation equations into time-mean and fluctuating components and then time averaging the 

entire equation. 

The following are true when turbulent flow parameters are considered: 

𝑢 =  𝑢̅ + 𝑢′                                                                                                                               (3.21) 

𝑣 =  𝑣̅ + 𝑣′                                                                                                                               (3.22) 

𝑤 = 𝑤̅ + 𝑤′                                                                                                                             (3.23) 

𝑝 =  𝑝̅ + 𝑝′                                                                                                                               (3.24) 

𝑇 =  𝑇̅ + 𝑇′                                                                                                                               (3.25) 

Where, 

𝑢̅ = 
1

𝑡
 ∫ 𝑢𝑑𝑡

𝑡

0                                                                                                                            (3.26) 

𝑣̅ = 
1

𝑡
 ∫ 𝑣𝑑𝑡

𝑡

0                                                                                                                            (3.27) 

𝑤̅ = 
1

𝑡
 ∫ 𝑤𝑑𝑡

𝑡

0
                                                                                                                             (3.28) 

3.3.1. Time-Averaged Continuity Equation for Turbulent Flow 

Considering continuity equation(3.8) takes the form 0
u v w

x y z

  
+ + =

                                   (3.29)

 

And substituting turbulent fluctuations,  𝑢 = 𝑢̅ + 𝑢′, 𝑣 =  𝑣̅ + 𝑣′ 

And 𝑤 = 𝑤̅ + 𝑤′ yields 
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𝜕𝑢

𝜕𝑥
 + 

𝜕𝑢′

𝜕𝑥
 + 

𝜕𝑣̅

𝜕𝑦
 + 

𝜕𝑣′

𝜕𝑦
 + 

𝜕𝑤̅

𝜕𝑧
 + 

𝜕𝑤′

𝜕𝑧
 = 0                                                                                     (3.30) 

When equation (3.29) is integrated over0 → 𝑡, it yields 

𝜕𝑢

𝜕𝑥
 +  

𝜕𝑢

𝜕𝑥
 +  

𝜕𝑣̿

𝜕𝑦
 + 

𝜕𝑣̅

𝜕𝑦
 +  

𝜕𝑤̿

𝜕𝑧
 +  

𝜕𝑤̅

𝜕𝑧
= 0                                                                                   (3.31) 

Simplifying equation (3.31) gives 

𝜕𝑢

𝜕𝑥
 +  

𝜕𝑣̅

𝜕𝑦
 + 

𝜕𝑤̅

𝜕𝑧
 = 0                                                                                                                   (3.32) 

Equation (3.32) is the mean velocity component for mass conservation equation. 

Considering equation (3.32), equation (3.30) reduces to: 

𝜕𝑢′

𝜕𝑥
 +  

𝜕𝑣′

𝜕𝑦
 +  

𝜕𝑤′

𝜕𝑧
 = 0                                                                                                              (3.33) 

This is the fluctuating component of velocity for turbulent flow for mass conservation equation. 

For turbulent flow, mass is always conserved for both mean velocity components and fluctuating 

velocity components.  

3.3.2. Time-Averaged Momentum Equation  

Considering momentum equation in 𝑥-direction when body forces are neglected gives: 

𝜕𝑢

𝜕𝑡
 +  (𝑢

𝜕𝑢

𝜕𝑥
 + 𝑣

𝜕𝑢

𝜕𝑦
 + 𝑤

𝜕𝑢

𝜕𝑧
) = −

1

𝜌
 (

𝜕𝑝

𝜕𝑥
) + 

𝜇

𝜌
 (

𝜕2𝑢

𝜕𝑥2
 + 

𝜕2𝑢

𝜕𝑦2
 + 

𝜕2𝑢

𝜕𝑧2
)                                     (3.34) 

When equation (3.29) is multiplied by 𝑢 and added to equation (3.34) it yields 

𝜕𝑢

𝜕𝑡
 +  (

𝜕𝑢2

𝜕𝑥
 +

𝜕(𝑢𝑣)

𝜕𝑦
 +

𝜕(𝑢𝑤)

𝜕𝑧
) =  −

1

𝜌
 (

𝜕𝑝

𝜕𝑥
) + 

𝜇

𝜌
 (

𝜕2𝑢

𝜕𝑥2  +  
𝜕2𝑢

𝜕𝑦2  +  
𝜕2𝑢

𝜕𝑧2)                                    (3.35) 

When equation (3.34) is averaged over0 → 𝑡, it gives 



19 

 

𝜕𝑢

𝜕𝑡
 +  (

𝜕𝑢2̅̅ ̅̅

𝜕𝑥
 +

𝜕(𝑢𝑣)̅̅ ̅̅ ̅̅

𝜕𝑦
 +

𝜕(𝑢𝑤)̅̅ ̅̅ ̅̅ ̅

𝜕𝑧
) =  −

1

𝜌
 (

𝜕𝑝̅

𝜕𝑥
)  + 

𝜇

𝜌
 (

𝜕2𝑢

𝜕𝑥2  +  
𝜕2𝑢

𝜕𝑦2  +  
𝜕2𝑢

𝜕𝑧2)                                    (3.36)  

But  
𝜕𝑢

𝜕𝑡
= 0 and substituting for 𝑢 = 𝑢̅ + 𝑢′, 𝑣 =  𝑣̅ + 𝑣′ and 𝑤 = 𝑤̅ + 𝑤′ in equation (3.36) it 

yields: 

(
𝜕(𝑢̅)2

𝜕𝑥
 +

𝜕(𝑢)2̅̅ ̅̅ ̅̅

𝜕𝑥
) + (

𝜕𝑢𝑣̅

𝜕𝑦
 +

𝜕𝑢 𝑣̅

𝜕𝑦
) + (

𝜕𝑢𝑤̅

𝜕𝑧
 +

𝜕𝑢𝑤̅

𝜕𝑧
) =  −

1

𝜌
 (

𝜕𝑝̅

𝜕𝑥
)  + 

𝜇

𝜌
 (

𝜕2𝑢

𝜕𝑥2  +  
𝜕2𝑢

𝜕𝑦2  +  
𝜕2𝑢

𝜕𝑧2)    (3.37)  

It can be shown that: 

𝜕(𝑢̅)2

𝜕𝑥
= 2𝑢̅

𝜕𝑢

𝜕𝑥
                                                                                                                            (3.38) 

𝜕𝑢𝑣̅

𝜕𝑦
 = 

𝑢𝜕𝑣̅

𝜕𝑦
 +  

𝑣̅𝜕𝑢

𝜕𝑦
                                                                                                                     (3.39) 

𝜕𝑢𝑤̅

𝜕𝑧
 = 

𝑢𝜕𝑤̅

𝜕𝑧
 +  

𝑤̅𝜕𝑢

𝜕𝑧
                                                                                                                   (3.40) 

When equation(3.38),(3.39) and (3.40) is substituted to equation (3.37) it yields:                      

(2𝑢̅
𝜕𝑢

𝜕𝑥
 +

𝜕(𝑢)2̅̅ ̅̅ ̅̅

𝜕𝑥
) + ( 

𝑢𝜕𝑣̅

𝜕𝑦
 +  

𝑣̅𝜕𝑢

𝜕𝑦
+

𝜕𝑢 𝑣̅

𝜕𝑦
) + (

𝑢𝜕𝑤̅

𝜕𝑧
 +  

𝑤̅𝜕𝑢

𝜕𝑧
 +

𝜕𝑢𝑤̅

𝜕𝑧
) =  −

1

𝜌
 (

𝜕𝑝̅

𝜕𝑥
)  + 

𝜇

𝜌
 (

𝜕2𝑢

𝜕𝑥2  +

 
𝜕2𝑢

𝜕𝑦2  +  
𝜕2𝑢

𝜕𝑧2)                                                                                                                              (3.41) 

When equation (3.32) is multiplied by 𝑢̅ and subtracted from equation (3.41), the result is:  

 (𝑢̅
𝜕𝑢

𝜕𝑥
 +

𝜕(𝑢)2̅̅ ̅̅ ̅̅

𝜕𝑥
) + ( 𝑣̅

𝜕𝑢

𝜕𝑦
+

𝜕𝑢 𝑣̅

𝜕𝑦
) + (𝑤̅

𝜕𝑢

𝜕𝑧
 +

𝜕𝑢𝑤̅

𝜕𝑧
) =  −

1

𝜌
 (

𝜕𝑝̅

𝜕𝑥
)  + 

𝜇

𝜌
 (

𝜕2𝑢

𝜕𝑥2
 +  

𝜕2𝑢

𝜕𝑦2
 +  

𝜕2𝑢

𝜕𝑧2
) (3.42) 

Rearranging equation (3.42) yields: 

𝑢̅
𝜕𝑢

𝜕𝑥
 + 𝑣̅

𝜕𝑢

𝜕𝑦
 + 𝑤̅

𝜕𝑢

𝜕𝑧
 = −

1

𝜌
 (

𝜕𝑝̅

𝜕𝑥
) + 

𝜇

𝜌
 (

𝜕2𝑢

𝜕𝑥2  + 
𝜕2𝑢

𝜕𝑦2  + 
𝜕2𝑢

𝜕𝑧2) − (
𝜕(𝑢)2̅̅ ̅̅ ̅̅

𝜕𝑥
 +

𝜕𝑢 𝑣̅

𝜕𝑦
 +  

𝜕𝑢𝑤̅

𝜕𝑧
 )           (3.43) 

Momentum equations in the 𝑦 and 𝑧-directions can be done in the same way and given as: 
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𝑢̅
𝜕𝑣̅

𝜕𝑥
 + 𝑣̅

𝜕𝑣̅

𝜕𝑦
 + 𝑤̅

𝜕𝑣̅

𝜕𝑧
 = −

1

𝜌
 (

𝜕𝑝̅

𝜕𝑥
) + 

𝜇

𝜌
 (

𝜕2𝑣̅

𝜕𝑥2  +  
𝜕2𝑣̅

𝜕𝑦2  + 
𝜕2𝑣̅

𝜕𝑧2) − (
𝜕𝑣̅𝑢

𝜕𝑥
 +

𝜕(𝑣)2̅̅ ̅̅ ̅̅

𝜕𝑦
 + 

𝜕𝑣̅𝑤̅

𝜕𝑧
 )            (3.44) 

𝑢̅
𝜕𝑤̅

𝜕𝑥
 + 𝑣̅

𝜕𝑤̅

𝜕𝑦
 + 𝑤̅

𝜕𝑤̅

𝜕𝑧
 = −

1

𝜌
 (

𝜕𝑝̅

𝜕𝑥
) + 

𝜇

𝜌
 (

𝜕2𝑤̅

𝜕𝑥2  +  
𝜕2𝑤̅

𝜕𝑦2  +  
𝜕2𝑤̅

𝜕𝑧2) − (
𝜕𝑤̅𝑢

𝜕𝑥
 +

𝜕𝑤̅𝑣̅

𝜕𝑦
 +  

𝜕(𝑤)2̅̅ ̅̅ ̅̅ ̅

𝜕𝑧
 )       (3.45) 

Equations (3.43), (3.44) and (3.45) are turbulent momentum equations for turbulent flow for an 

incompressible fluid in the 𝑥, 𝑦 𝑎𝑛𝑑 𝑧- directions respectively. 

3.3.3. Time-Averaged Energy Equation 

When the dissipative function is neglected in equation (3.20) the energy equation is given as: 

𝜌𝐶𝑝 (
𝜕𝑇

𝜕𝑡
 + 𝑢

𝜕𝑇

𝜕𝑥
 + 𝑣

𝜕𝑇

𝜕𝑦
 + 𝑤

𝜕𝑇

𝜕𝑧
) = 𝑘 (

𝜕2𝑇

𝜕𝑥2  + 
𝜕2𝑇

𝜕𝑦2  + 
𝜕2𝑇

𝜕𝑧2)                                                     (3.46) 

When equation (3.29) is multiplied by 𝑇 and added it to equation (3.46) in component form the 

result is: 

𝜕𝑇

𝜕𝑡
 +  

𝜕(𝑢𝑇)

𝜕𝑥
 +  

𝜕(𝑣𝑇)

𝜕𝑦
 +

𝜕(𝑤𝑇)

𝜕𝑧
 = 

𝑘

𝜌𝐶𝑝
 (

𝜕2𝑇

𝜕𝑥2
 + 

𝜕2𝑇

𝜕𝑦2
 +  

𝜕2𝑇

𝜕𝑧2
)                                                       (3.47) 

When equation (3.47) is averaged over0 → 𝑡, it gives: 

𝜕𝑇

𝜕𝑡
 +  

𝜕(𝑢𝑇)̅̅ ̅̅ ̅̅ ̅

𝜕𝑥
 +  

𝜕(𝑣𝑇)̅̅ ̅̅ ̅̅

𝜕𝑦
 +

𝜕(𝑤𝑇)̅̅ ̅̅ ̅̅ ̅

𝜕𝑧
 = 

𝑘

𝜌𝐶𝑝
 (

𝜕2𝑇

𝜕𝑥2
 +  

𝜕2𝑇

𝜕𝑦2
 +  

𝜕2𝑇

𝜕𝑧2
)                                                       (3.48) 

But 𝑇 = 𝑇 Since fluctuation in temperature is neglected and 𝑢 =  𝑢 + 𝑢(𝑡), 𝑣 = 𝑣 + 𝑣(𝑡) and 𝑤 =

𝑤 + 𝑤(𝑡), thus when this is substituted to equation (3.48) and rearranging it yields: 

𝜕𝑇

𝜕𝑡
 + (𝑢

𝜕𝑇

𝜕𝑥
 +  𝑇  

𝜕𝑢

𝜕𝑥
) + (𝑣

𝜕𝑇

𝜕𝑦
 +  𝑇  

𝜕𝑣

𝜕𝑦
) + (𝑤

𝜕𝑇

𝜕𝑧
 +  𝑇  

𝜕𝑤

𝜕𝑧
) =  

𝑘

𝜌𝐶𝑝
 (

𝜕2𝑇

𝜕𝑥2  +  
𝜕2𝑇

𝜕𝑦2  +  
𝜕2𝑇

𝜕𝑧2) −

 (
𝜕(𝑢𝑇)̅̅ ̅̅ ̅̅ ̅

𝜕𝑥
 +  

𝜕(𝑣𝑇)̅̅ ̅̅ ̅̅

𝜕𝑦
 +

𝜕(𝑤𝑇)̅̅ ̅̅ ̅̅ ̅

𝜕𝑧
 )                                                                                                        (3.49)  
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Since 
𝜕𝑢

𝜕𝑥
= 

𝜕𝑣

𝜕𝑦
= 

𝜕𝑤

𝜕𝑧
= 0  as shown from the time- average equation and hence substituting this 

into equation (3.49) yields 

 
𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
+ 𝑤

𝜕𝑇

𝜕𝑧
= 

𝑘

𝜌𝐶𝑝
 (

𝜕2𝑇

𝜕𝑥2  +  
𝜕2𝑇

𝜕𝑦2  +  
𝜕2𝑇

𝜕𝑧2) − (
𝜕(𝑢𝑇)̅̅ ̅̅ ̅̅ ̅

𝜕𝑥
 +  

𝜕(𝑣𝑇)̅̅ ̅̅ ̅̅

𝜕𝑦
 +

𝜕(𝑤𝑇)̅̅ ̅̅ ̅̅ ̅

𝜕𝑧
 )            (3.50) 

Thus equation (3.50) is the energy equation for turbulent flow. 

3.4 Electromagnetic Equations  

MHD comprises of electromagnetic and fluid mechanics therefore governing equations are always 

taken out of electromagnetic theory and fluid mechanics. These include Maxwell’s and Ohm’s law 

equations, David (2006). 

3.4.1. Maxwell’s Equations 

Maxwell’s first equation known as curl 𝐸⃗  equation which gives the relationship between the 

electric and magnetic fields is given as: 

∇⃗⃗  × 𝐸⃗ =  
𝜕𝐵⃗ 

𝜕𝑡
                                                                                                                             (3.51) 

Maxwell’s second equation known as Maxwell’s curl 𝐻 is given as: 

∇⃗⃗  × 𝐻⃗⃗ = 𝐽                                                                                                                                   (3.52) 

(3.52) can be expressed in a general form as: 

∇⃗⃗  × 𝐻⃗⃗ = 𝐽  +  
𝜕𝐷⃗⃗ 

𝜕𝑡
                                                                                                                      (3.53) 

Where 
𝜕𝐷⃗⃗ 

𝜕𝑡
 refers to the displacement current. 
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Therefore the four Maxwell’s equations governing electromagnetic theory are given as follows: 

∇⃗⃗  × 𝐸⃗ =  
𝜕𝐵⃗ 

𝜕𝑡
                                                                                                                             (3.54) 

  ∇⃗⃗  × 𝐻⃗⃗ = 𝐽                                                                                                               (3.55) 

∇⃗⃗ . 𝐵⃗ = 0                                                                                                                                     (3.56) 

Equation (3.56) is Gauss’ law of magnetism. 

∇⃗⃗ . 𝐷⃗⃗ = 𝜌𝑒                                                                                                                                   (3.57) 

Equation (3.57) is Gauss’ law of electricity. 

3.4.2. Ohm’s Law 

The magnitude of the induced current for any conductor moving within the magnetic field is given 

as 𝑞  × 𝐵⃗ . Thus the Ohm’s law expressing the current density is given as: 

𝐽 =  𝜎𝐸⃗                                                                                                                                      (3.58) 

In this case, 𝐸 is the effective electric field intensity and 𝜎 is the current density. 

But when a conductor is moving in a magnetic field, this is given as 𝐸⃗ + 𝑞 × 𝐵⃗  where 𝐸 is the 

applied electric field and 𝑞 × 𝐵⃗  is the induced electric field. This brings equation (3.58) as: 

𝐽 = 𝜎(𝐸⃗ + 𝑞  × 𝐵⃗ )                                                                                                                   (3.59) 

Equation (3.59) is the Ohm’s law giving the current density. 
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 3.5 Non- dimensional parameters 

These are parameters that are useful in fluid dynamics and they include Reynolds Number, Re, 

Prandtl Number, Pr, Grashof Number, Gr, Time Parameter, Rt, Eckert number, Ec, Magnetic 

Parameter, M, among many others. They are introduced to the governing equations through scaling 

variables. This is to ensure that the solution is independent from units of any given variable.  

3.5.1 Reynolds Number, Re 

This is the ratio of the inertia force to the viscous force. It gives the significance of inertia and 

viscous forces in fluid flow.  

It is used to determine whether the flow is laminar or turbulent. Low Re shows laminar flow while 

high Re indicates turbulent flow. It is given by: 

Re
vL


=

 

Where  is the fluid density, 

        v   is the velocity scale, 

      L   is the Length scale and 

         is the fluid viscosity Incropera, (2007) 

3.5.2 Prandtl Number, Pr 

This is the ratio of viscosity to the thermal diffusivity. It is given by: 

Pr
pC

k

 


= =

 

Where





= is the kinematic viscosity and 
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p

k

C



=  is the  thermal diffusivity coefficient. 

3.5.3 Grashof Number, Gr 

It is the ratio of forcing (buoyancy) force to restraining (viscous) force. 

It is significant in free convection flows. Gr of over 109indicates turbulent flow while Gr in the 

range 3 610 10Gr  indicates laminar flow, (Holman, 2010) 

It is given by: 

( ) 3

2

g T T L
Gr





−
=

 

g is the gravitational acceleration 

   refers to the thermal expansion coefficient. 

T andT are the surface and bulk temperatures respectively  

L is the characteristic length and 

  is the coefficient of kinematic viscosity. 

3.5.4 Time Parameter, Rt 

This is a parameter characterizing the time scale of the problem with respect to flow velocity. It is 

defined as  

0 0
t

t u
R

L
=
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3.5.5 Eckert Number, Ec 

This represent a dimensionless parameter which is important in flows of high speed with 

significant viscous dissipation . It gives the ratio of kinetic energy to the boundary layer enthalpy. 

It is given by: 

2

p

u
Ec

C T
=



 

 

T  refers to temperature change.  

3.5.6 Magnetic Parameter, M 

Refers to the ratio of magnetic force to inertia force. It is given by: 

2
2

2

2

2

Magnetic force H
M

Inertia force u

H
M

u

 



 



= =

 =

 

3.5.7 Turbulent Prandtl Number, 𝑷𝒓𝒕 

This refers to the ratio of momentum eddy diffusivity to the heat transfer diffusivity. It is given as: 

𝑃𝑟𝑡 = 
𝜀𝑀

𝜀𝐻
 , where 𝜀𝑀 = 2𝑘2𝑧2 𝜕𝑣

𝜕𝑧
 

3.6 Method of Solution 

The arising partial differential equations shall be solved using the explicit finite difference scheme 

which gives the numerical approximation of the solution. And thereafter the results presented in 

form of graphs.  
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Grid mesh is considered which assumed to be a rectangular plane with the horizontal axis 𝑦 and 

the vertical axis 𝑡. In this case, 𝑡 is varied from 0→ 𝑎 and 𝑦 is varied from 0 → 𝑏 with the intervals 

being divided into 𝑛 𝑎𝑛𝑑 𝑚 each having width ∆𝑡 𝑎𝑛𝑑 ∆y respectively. 

Given any point on the rectangular plane say (𝑦ί, 𝑡𝑗) can be defined as 

𝑦ί =  ί∆𝑦;  ί = 1,2,3, … 

𝑡𝑗 = 𝑗∆𝑡; 𝑗 = 1,2.3, …. 

The given figure is an illustration of the intersections at the mesh points by the grid lines 𝑦ί and 𝑡𝑗 

. 

. 

 

 

 

 

 

                                                Figure 3.1: Finite difference Grid Mesh 

Considering the finite difference approximation for the first and second derivatives of 𝑈 with 

respect to 𝑦, and applying the Taylor’s series expansion in variables 𝑦 and 𝑡 at the points 

(𝑦(𝑖+1,𝑗), 𝑡𝑗   ) and (𝑦(𝑖−1,𝑗), 𝑡𝑗) about (𝑦𝑖, 𝑡𝑗) we obtain: 
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𝑈(𝑖+1,𝑗) = 𝑈(𝑖,𝑗) + 𝑈𝑦(𝑖,𝑗)∆𝑦 + 
1

2
𝑈𝑦𝑦(𝑖,𝑗)(∆𝑦)2 + ⋯                                                                (3.60) 

 𝑈(𝑖−1,𝑗) = 𝑈(𝑖,𝑗) − 𝑈𝑦(𝑖,𝑗)∆𝑦 + 
1

2
𝑈𝑦𝑦(𝑖,𝑗)(∆𝑦)2 + ⋯                                                               (3.61) 

𝑈(𝑖,𝑗+1) = 𝑈(𝑖,𝑗) + 𝑈𝑡(𝑖,𝑗)∆𝑡 + 
1

2
𝑈𝑡𝑡(𝑖,𝑗)(∆𝑦)2 + ⋯                                                                  (3.62)  

 𝑈(𝑖,𝑗−1) = 𝑈(𝑖,𝑗) − 𝑈𝑡(𝑖,𝑗)∆𝑡 + 
1

2
𝑈𝑡𝑡(𝑖,𝑗)(∆𝑦)2 + ⋯                                                                 (3.63)  

In this case, 𝑈(𝑖,𝑗) = 𝑈(𝑦𝑖,𝑡𝑗)
  and 𝑈𝑦(𝑖,𝑗) = 

𝜕𝑈
(𝑦𝑖,𝑡𝑗)

𝜕𝑦
                                                                (3.64)       

Eliminating 𝑈𝑦 and 𝑈𝑦𝑦 in equations (3.60) and (3.61) and also 𝑈𝑡  and 𝑈𝑡𝑡 in equations (3.62) 

and (3.63), the following set of equations are obtained. 

𝜕𝑈(𝑖,𝑗)

𝜕𝑦
= 

𝑈(𝑖+1,𝑗) −𝑈(𝑖−1,𝑗) 

2ℎ
 + 𝑜(ℎ2)                                                                                             (3.65) 

𝜕𝑈(𝑖,𝑗)

𝜕𝑡
= 

𝑈(𝑖,𝑗+1) −𝑈(𝑖−1,𝑗) 

2𝑘
 + 𝑜(𝑘2)                                                                                             (3.66)  

𝜕2𝑈(𝑖,𝑗)

𝜕𝑦2 = 
𝑈(𝑖+1,𝑗) −2𝑈(𝑖,𝑗) +𝑈(𝑖−1,𝑗) 

ℎ2  + 𝑜(ℎ2)                                                                                 (3.67)  

𝜕2𝑈(𝑖,𝑗)

𝜕𝑡2 = 
𝑈(𝑖,𝑗+1) −2𝑈(𝑖,𝑗) +𝑈(𝑖,𝑗−1) 

𝑘2  + 𝑜(𝑘2)                                                                                 (3.68)       

The approximate solutions for the finite difference scheme for the differential equations are 

obtained using equations (3.65), (3.66), (3.67), and (3.68). Smaller values of ∆𝑡 and ∆𝑦 are 

considered to minimize the order of truncation errors.                 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Introduction 

In this chapter, the governing equations for the problem are formulated. Consideration of the 

analysis of hydro magnetic free convection fluid flow that is turbulent and past an infinite 

vertical porous plate is given. The fluid being considered is electrically conducting. Conservation 

equations are used to modeled the problem in this chapter as stated in chapter three  . The 

modeled governing equations are non-dimensionalised for this problem and some of the non-

dimensional parameters discussed in chapter three are also introduced. The approximate 

numerical solution determined by the use of explicit finite difference scheme and solved by the 

use of MATLAB computer software. The results are presented graphically and discussed. 

4.2 Mathematical model 

A two-dimensional flow is considered in this study. The infinite vertical porous plate is taken to 

be along the x-axis and the y-axis taken to be on the horizontal whereas the z-axis normal to the 

plate. The fluid being considered is incompressible and viscous. A magnetic field of a high 

magnitude H0 is applied perpendicularly to the direction of flow of the fluid. It is assumed that 

the induced magnetic field is negligible therefore 𝐻 = (0,0, 𝐻0) as indicated in the schematic 

diagram in figure 4.1. At time t*>0, the fluid is stationary and the plate starts to move 

impulsively in its plane with velocity 𝑈0 and the temperature of the plate raised instantly to 𝑇𝑊
∗  

and maintained constant later on.  
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                                               Figure 4.1: Schematic diagram for the fluid flow. 
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The flow is therefore governed by the following equations: 

𝜕𝑈∗

𝜕𝑡∗
 + 𝑉∗ 𝜕𝑈∗

𝜕𝑦∗
 = −

1

𝜌

𝜕𝑝

𝜕𝑥
 + (

𝜕2𝑈∗

𝜕𝑧∗2
)  −  

𝜕(𝑢𝑤̅)

𝜕𝑧∗
 +𝜌𝑔 + 𝐽 x𝐵⃗                                                             (4.1) 

 
𝜕𝑉∗

𝜕𝑡∗  + 𝑉∗ 𝜕𝑉∗

𝜕𝑦∗  =  (  
𝜕2𝑉∗

𝜕𝑧∗2) − 
𝜕(𝑢 𝑤̅̅̅ ̅̅ ̅

𝜕𝑧∗2  + 𝐽  x 𝐵⃗                                                                               

(4.2)                                                                                                  

𝜕𝑇∗

𝜕𝑡∗
 + 𝑉∗ 𝜕𝑇∗

𝜕𝑦∗
 = 

𝑘

𝜌𝐶𝑝
(  

𝜕2𝑇∗

𝜕𝑧∗2
 ) − 

𝜕(𝑤𝑇̅)̅̅ ̅̅ ̅̅

𝜕𝑧∗
                                                                                         (4.3)                      

Where, 

   = 
µ

𝜌
  is the kinematic viscosity 

𝜌  Is the fluid density 

𝜌𝑔 is the specific weight of the fluid 

The initial and boundary conditions will be as follows: 

𝑡∗ < 0 : 𝑈∗= 0, 𝑉∗= 0, 𝑇∗ = 𝑇∞
∗   everywhere 

𝑡∗ ≥ 0: 𝑈∗= 0, 𝑉∗= 0,  𝑇∗ = 𝑇∞
∗   at 𝑧 → ∞ 

𝑈∗ = 1, 𝑉∗ = 0, 𝑇∗ = 𝑇𝑤
∗ ,  at z= 0  

The change in elevation up the plate will result in the pressure gradient in the x- axis direction 

therefore 
𝜕𝑝

𝜕𝑥
 =- 𝜌∞𝑔 

Thus equation (4.1) becomes:  
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𝜕𝑈∗

𝜕𝑡
+ 𝑉

𝜕𝑈∗

𝜕𝑦∗
   = 𝜐 (

𝜕2𝑈∗

𝜕𝑧∗2
) −  

𝜕(𝑢𝑤̅)

𝜕𝑧∗
 +𝑔(𝜌 − 𝜌∞) + 𝐽 × 𝐵⃗                                                            (4.4)                                                                      

Hollman, (2010) defined that the difference in density can be expressed in terms of volume 

coefficient of expansion given by 

𝛽= 
1

𝑉
pT

U












=  

1

𝑉∞
 . 

𝑉−𝑉∞

𝑇−𝑇∞
 = 

(𝜌∞ −𝜌)

𝜌(𝑇−𝑇∞ )
                                                                                           (4.5) 

Thus, 𝛽 =  
𝜌∞ −𝜌

𝜌(𝑇−𝑇∞ )
 

When equation (4.5) is substituted in equation (4.4), the result is: 

𝜕𝑈∗

𝜕𝑡∗ + 𝑉∗ 𝜕𝑈∗

𝜕𝑦∗   = υ(
𝜕2𝑈∗

𝜕𝑧∗2) −  
𝜕(𝑢̅𝑤̅)

𝜕𝑧∗  +𝑔𝜌𝛽(𝑇∗ − 𝑇∞
∗ ) + 𝐽 × 𝐵⃗                                                      (4.6)                                                                                                                                             

The term 𝐽  ×  𝐵⃗  represents electromagnetic force therefore its components can be obtained from 

the equation of conservation of electric charge given by 

∇⃗⃗ ∙ 𝐽 = 0, giving 𝑗𝑧̂∗= constant where  

𝐽  = ( 𝑗𝑥̂∗ , 𝑗𝑦̂∗, 𝑗𝑧̂∗ ).  

Since 𝒋̂𝑧∗ = 0 at the plate which is electrically non-conducting, this constant is assumed to be 

zero, therefore 𝒋̂𝑧∗ = 0 everywhere in the flow. 

Cowling, (1957) gave the generalized ohm’s law with Hall current effects as 

𝐽  + 
𝜔𝑒 𝜏𝑒

𝐻0
 (𝐽  𝑋 𝐻⃗⃗ ) = (𝐸⃗  +  𝜇𝑒 𝑞  x 𝐻⃗⃗  +  

1

𝑒𝑛𝑒
 ∇⃗⃗ 𝑝𝑒)                                                                       (4.7) 

Where, ∇⃗⃗ = Gradient operator, given as ∇⃗⃗ = 𝑖̂
𝜕

𝜕𝑥
 + 𝑗̂

𝜕

𝜕𝑦
 + 𝑘̂

𝜕

𝜕𝑧
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              𝑝𝑒 = Electron pressure 

               𝐸⃗  = Electric field (V𝑚−1), 

               𝜇𝑒 = electron permeability (H/m) 

               𝜔𝑒𝜏𝑒 = 𝑚 is the hall parameters 

In this case, the ion- slip and thermoelectric effects are neglected. 

Since there is no applied electric field, then 

𝐸⃗  = 0                                                                                                                                           (4.8) 

If we neglect electron pressure, equation 4.7 reduces to; 

𝐽  + 
𝜔𝑒 𝜏𝑒

𝐻⃗⃗ 0
 (𝐽  ×  𝐻⃗⃗ ) = 𝜎( 𝜇𝑒 𝑞  ×  𝐻⃗⃗  )                                                                                            (4.9) 

Where 𝐽  = 𝑗𝑥̂∗ + 𝑗𝑦̂∗  + 𝑗𝑧̂∗                                                                                                       (4.10) 

When equation (4.8) and (4.10) is substituted into (4.9), it yields: 

𝑗𝑥̂∗ + 𝑗𝑦̂∗  + 𝑗𝑧̂∗ + 
𝜔𝑒 𝜏𝑒

𝐻0
 |

𝑖 𝑗 𝑘
𝑗𝑥̂∗ 𝑗𝑦̂∗ 𝑗𝑧̂∗

0 0 𝐻⃗⃗ 0

| = 𝜎𝜇𝑒 |

𝑖 𝑗 𝑘
𝑢 𝑣 𝑤

0 0 𝐻⃗⃗ 0

|                                                    (4.11) 

This yield, 

𝑗𝑥̂∗ + 𝑗𝑦̂∗  + 𝑗𝑧̂∗ + 
𝜔𝑒 𝜏𝑒

H0
 (𝐻⃗⃗ 0𝑗𝑦̂∗ − 𝐻⃗⃗ 0 𝑗𝑥̂∗   + 0)= 𝜎𝜇𝑒(𝑉𝐻⃗⃗ 0 −  𝜇𝐻⃗⃗ 0  + 0)                               (4.12)    

Equation (4.12) gives: 

𝑗𝑥̂∗ + 𝜔𝑒𝜏𝑒 𝑗𝑦̂∗ =  𝜎𝜇𝑒𝐻⃗⃗ 0𝑉
∗                                                                                                     (4.13) 
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𝑗𝑦̂∗ − 𝜔𝑒𝜏𝑒 𝑗𝑥̂∗ =  𝜎𝜇𝑒𝐻⃗⃗ 0𝑈
∗                                                                                                     (4.14) 

Since 𝑚 =  𝜔𝑒𝜏𝑒, then 

𝑗𝑥̂∗ + 𝑚𝑗𝑦̂∗ =  𝜎𝜇𝑒𝐻⃗⃗ 0𝑉
∗                                                                                                           (4.15) 

𝑗𝑦̂∗  − 𝑚𝑗𝑥̂∗   =  − 𝜎𝜇𝑒𝐻⃗⃗ 0𝑈
∗                                                                                                     (4.16) 

Simultaneous solution of equation (4.15) and (4.16) gives 

𝑗𝑥̂∗ = 
𝜎𝜇𝑒 𝐻0(𝑚𝑈∗+ 𝑉∗ )

1 + 𝑚2                                                                                                                 (4.17) 

 

𝑗𝑦̂∗  = 
𝜎𝜇𝑒𝐻0(𝑚𝑉∗− 𝑈∗)

1 + 𝑚2                                                                                                                 (4.18)                                                                                                                                                

Therefore the force due to electromagnetism is given by 

𝐽  ×  𝐵⃗  = |

𝑖 𝑗 𝑘
𝑗𝑥̂∗ 𝑗𝑦̂∗ 0

0 0 𝐵⃗ 0

|                                                                                                        (4.19) 

If 𝐵⃗ 0 is substituted with 𝜇𝑒 𝐻⃗⃗ 0 then equation (4.19) becomes; 

𝐽  ×  𝐵⃗  = |

𝑖 𝑗 𝑘
𝑗𝑥̂∗ 𝑗𝑦̂∗ 0

0 0 𝜇𝑒𝐻⃗⃗ 0

|                                                                                                     (4.20) 

Equation (4.20) also reduces to 

𝐽  𝑋 𝐵⃗  =  ( 𝜇𝑒 𝐻⃗⃗ 0 𝑗𝑦̂∗ − 𝜇𝑒𝐻⃗⃗ 0 𝑗𝑥̂∗  + 0)                                                                                     (4.21) 
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It is therefore from this equation that electromagnetic force along x-axis and y-axis can be 

obtained from equation (4.17) and (4.18) respectively. These are given as: 

(𝐽  × 𝐵⃗ )
𝑥∗  = 

𝜎𝜇𝑒
2𝐻0

2(𝑚𝑉∗− 𝑈∗)

1 + 𝑚2                                                                                                     (4.22) 

(𝐽  𝑋 𝐵⃗ )
𝑦∗  = −  

𝜎𝜇𝑒
2 𝐻0

2(𝑚𝑈∗+ 𝑉∗ )

1 + 𝑚2
                                                                                               (4.23)  

Thus, the governing equations (4.1) and (4.2) become: 

𝜕𝑈∗

𝜕𝑡∗ + 𝑉∗ 𝜕𝑈∗

𝜕𝑦∗ = υ(
𝜕2𝑈∗

𝜕𝑧∗2) − 
𝜕(𝑢̅𝑤̅)

𝜕𝑧∗  +𝑔𝛽(𝑇∗ − 𝑇∞
∗  ) + 

𝜎𝜇𝑒
2𝐻0

2(𝑚𝑉∗− 𝑈∗)

1 + 𝑚2                                        (4.24)                                                   

𝜕𝑉∗

𝜕𝑡∗ + 𝑉∗ 𝜕𝑉∗

𝜕𝑦∗  = 𝜐 ( 
𝜕2𝑉∗

𝜕𝑧∗2) − 
𝜕(𝑣 𝑤̅̅̅ ̅̅ ̅)

𝜕𝑧∗2 + 𝑔𝛽(𝑇∗ − 𝑇∞
∗  ) − 

𝜎𝜇𝑒
2 𝐻0

2(𝑚𝑈∗+ 𝑉∗ )

1 + 𝑚2                                   (4.25)                                    

4.3 Non-dimensionalization 

We non-dimensionalize equation (4.3), (4.24) and (4.25) using the following scaling variables in 

the process of Non –dimensionalisation. 

𝑡 = 
𝑡∗ 𝑈0

2

𝜐
,  = 

𝑧∗ 𝑈0

𝜐
, 𝑦 =  

𝑦∗𝑈0

𝜐
  𝑈 = 

𝑈∗

𝑈0
, 𝑉 =

𝑉∗

𝑈0
 , 𝜃 = 

𝑇∗ − 𝑇𝑤
∗

𝑇𝑤
∗  − 𝑇∞

∗ ,                                                   (4.26) 

In this case; 

The superscript (∗) denotes dimensional variable. 

𝑈0 Denotes reference velocity, 

𝑇𝑤
∗  − 𝑇∞

∗   Denotes temperature difference between the surface and the free stream temperature.  

When the above scaling variables are used, we obtained the following: 

𝜕𝑈∗

𝜕𝑡∗
  = 

𝜕𝑈∗

𝜕𝑈

𝜕𝑈

𝜕𝑡

𝜕𝑡

𝜕𝑡∗
 =

𝑈0
3

𝜐

𝜕𝑈

𝜕𝑡
                                                                                                         (4.27)                                   



35 

 

𝜕𝑉∗

𝜕𝑡∗  =
𝜕𝑉∗

𝜕𝑉

𝜕𝑉

𝜕𝑡

𝜕𝑡

𝜕𝑡∗  = 
𝑈0

3

𝜐
 
𝜕𝑉

𝜕𝑡
                                                                                                          (4.28)                         

𝜕𝑈∗

𝜕𝑧∗  =  
𝜕𝑈∗

𝜕𝑈

𝜕𝑈

𝜕𝑧

𝜕𝑧

𝜕𝑧∗  = 
𝑈0

2

𝜐

𝜕𝑈

𝜕𝑧
                                                                                                        (4.29)                        

𝜕𝑉∗

𝜕𝑧∗  =  
𝜕𝑉∗

𝜕𝑉

𝜕𝑉

𝜕𝑧

𝜕𝑧

𝜕𝑧∗  =
𝑈0

2

𝜐

𝜕𝑉

𝜕𝑧
                                                                                                         (4.30)                            

𝜕𝑇∗

𝜕𝑡∗  =
𝜕𝑇∗

𝜕𝜃

𝜕𝜃

𝜕𝑡

𝜕𝑡

𝜕𝑡∗  = (𝑇𝑤
∗  − 𝑇∞

∗ )
𝑈0

2

𝜐

𝜕𝜃

𝜕𝑡
                                                                                        (4.31)                       

 
𝜕𝑈∗

𝜕𝑦∗  =
𝜕𝑈∗

𝜕𝑈

𝜕𝑈

𝜕𝑦

𝜕𝑦

𝜕𝑦∗  = 
𝑈0

2

𝜐

𝜕𝑈

𝜕𝑦
                                                                                                        (4.32) 

𝜕𝑈∗

𝜕𝑧∗2
 = 

𝜕

𝜕𝑧
(
𝑈0

2

𝜐

𝜕𝑈

𝜕𝑧
)

𝜕𝑧

𝜕𝑧∗  = 
𝑈0

3

𝜐2

𝜕2𝑈

𝜕𝑧2                                                                                                 (4.33)                                                                                                                                                                                                                                                                                                            

 
𝜕𝑉∗

𝜕𝑧∗2
 =

𝜕

𝜕𝑧
(
𝑈0

2

𝜐

𝜕𝑉

𝜕𝑧
)

𝜕𝑧

𝜕𝑧∗  
𝑈0

3

𝜐2

𝜕2𝑉

𝜕𝑧2                                                                                                     (4.34)  

𝜕𝑇∗

𝜕𝑦∗  =
𝜕𝑇∗

𝜕𝜃

𝜕𝜃

𝜕𝑦

𝜕𝑦

𝜕𝑦∗  =  (𝑇𝑤
∗  − 𝑇∞

∗ )
𝑈0

𝜐

𝜕𝜃

𝜕𝑦
                                                                                       (4.35)                               

𝜕2𝑇∗

𝜕𝑧∗2
 =

𝜕

𝜕𝑧
 (

𝑈0(𝑇𝑤
∗  −𝑇∞

∗ )

𝜐
 
𝜕𝜃

𝜕𝑧
)

𝜕𝑧

𝜕𝑧∗  = 𝑈0
2 (𝑇𝑤

∗  − 𝑇∞
∗ )

𝜐2  
𝜕2𝜃

𝜕𝑧2                                                                    (4.36) 

When the above scaling variables are used and substituted into (4.24) gives; 

𝑈0
3

𝜐

𝜕𝑈

𝜕𝑡
+

𝑈0
3

𝜐
𝑉

𝜕𝑈

𝜕𝑦
 = 

𝑈0
3

𝜐
( 

𝜕2𝑈

𝜕𝑧2)  − 
𝜕𝑢𝑤

𝜕𝑧
 − 𝑔𝛽(𝑇𝑤

∗  − 𝑇∞
∗ ) +

𝜎𝜇𝑒
2𝐻0

2(𝑚𝑉∗− 𝑈∗)

1 + 𝑚2  ,                               (4.37) 

Thus 

𝑈0
3

𝜐

𝜕𝑈

𝜕𝑡
+

𝑈0
3

𝜐
𝑉

𝜕𝑈

𝜕𝑦
= 

𝑈0
3

𝜐
(
𝜕2𝑈

𝜕𝑧2) − 
𝜕𝑢𝑤

𝜕𝑧
 − 𝑔𝛽(𝑇𝑤

∗  − 𝑇∞
∗ ) +

𝜎𝜇𝑒
2𝐻0𝑈0

2 (𝑚𝑉− 𝑈)

1 + 𝑚2                                    (4.38)                            

Equation (4.37) when rearranged gives  
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𝜕𝑈

𝜕𝑡
+ 𝑉

𝜕𝑈

𝜕𝑦
= (

𝜕2𝑈

𝜕𝑧2)  −
𝜕𝑢𝑤

𝜕𝑧
 −  

𝜐𝑔𝛽(𝑇𝑤
∗  − 𝑇∞

∗ ) 

𝑈0
3   +  

𝜎𝜇𝑒
2𝐻0

2ɤ(𝑚𝑉− 𝑈)

𝑈0
2(1 + 𝑚2)

                                                (4.39)                                                           

Considering the non-dimensional parameters given as 

  𝐺𝑟 =  
𝜐𝑔𝛽(𝑇𝑤

∗  − 𝑇∞
∗ ) 

𝑈0
3 , 

 𝜃 = 
𝑇∗ − 𝑇𝑤

∗

𝑇𝑤
∗  − 𝑇∞

∗  , 

 𝑀2 = 
𝜎𝜇𝑒

2𝐻0
2𝜐

𝑈0
2 , 

Equation (4.38) yields, 

𝜕𝑈

𝜕𝑡
+ 𝑉

𝜕𝑈

𝜕𝑦
= (

𝜕2𝑈

𝜕𝑧2)  −
𝜕𝑢𝑤

𝜕𝑧
 −  𝐺𝑟𝜃  + 

𝑀2(𝑚𝑉− 𝑈)

(1 + 𝑚2)
                                                                     (4.40)                                                                                   

Following the same procedure, it can also be shown that equation (4.25) results in; 

𝑈0
3

𝜐

𝜕𝑉

𝜕𝑡
 +

𝑈0
3

𝜐
𝑉

𝜕𝑉

𝜕𝑦
 = 

𝑈0
3

𝜐2 (
𝜕2𝑉

𝜕𝑧2) − 
𝜕𝑣𝑤

𝜕𝑧
   − 

𝜎𝜇𝑒
2𝐻0𝑈0

2 (𝑚𝑈+𝑉)

1 + 𝑚2                                                             (4.41)                                                                              

On rearranging equation (4.41) gives 

𝜕𝑉

𝜕𝑡
+ 𝑉

𝜕𝑉

𝜕𝑦
 = 

1

𝜐
 (

𝜕2𝑉

𝜕𝑧2)  − 
𝜕𝑣𝑤

𝜕𝑧
   − 

𝜎𝜇𝑒
2𝐻0𝑈0

2 (𝑚𝑈+𝑉)

1 + 𝑚2                                                                        (4.42)                                                                                         

Introducing non-dimensional parameters equation (4.42) reduces to; 

𝜕𝑉

𝜕𝑡
+ 𝑉

𝜕𝑉

𝜕𝑦
= (

𝜕2𝑉

𝜕𝑧2) − 
𝜕𝑣𝑤

𝜕𝑧
   − 

𝑀2(𝑚𝑈+𝑉)

1 + 𝑚2                                                                                    (4.43)  

Where 𝑀2 = 
𝜎𝜇𝑒

2𝐻0
2𝜐

𝑈0
2                                                                                             

Considering equation (4.3) and substituting (4.31), (4.35) and (4.36) into it yields  
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(𝑇𝑤
∗  − 𝑇∞

∗ ) 
𝑈0

2

𝜐

𝜕𝜃

𝜕𝑡
  +(𝑇𝑤

∗  − 𝑇∞
∗ )

𝑈0
2

𝜐
𝑉

𝜕𝜃

𝜕𝑦
  =  

𝑘𝑈0
2

𝜌𝐶𝑝

(𝑇𝑤
∗  − 𝑇∞

∗ )

𝜐2  
𝜕2𝜃

𝜕𝑧2  −
𝜕𝑤𝑇̅̅̅̅̅̅

𝜕𝑧
                                       (4.44)  

Rearranging equation (4.44) yields, 

𝜕𝜃

𝜕𝑡
 + 𝑉

𝜕𝜃

𝜕𝑦
= 

𝑘

𝜌𝐶𝑝𝜐
( 

𝜕2𝜃

𝜕𝑧2) − 
𝜕𝑤𝑇̅̅̅̅̅

𝜕𝑧
                                                                                                (4.45)                                                                                                                         

Using the non-dimensional parameter  Pr = 
𝜇𝐶𝑝

𝑘
 

Equation 4.45 reduces to 

 𝑃𝑟 (
𝜕𝜃

𝜕𝑡
 + 𝑉

𝜕𝜃

𝜕𝑦
) =   ( 

𝜕2𝜃

𝜕𝑧2)  −Pr
𝜕𝑤𝑇̅̅̅̅̅

𝜕𝑧
                                                                                      (4.46)                             

Thus the governing equations are as follows: 

𝜕𝑈

𝜕𝑡
+ 𝑉

𝜕𝑈

𝜕𝑦
= (

𝜕2𝑈

𝜕𝑧2)  −
𝜕𝑢𝑤

𝜕𝑧
 −  𝐺𝑟𝜃  + 

𝑀2(𝑚𝑉− 𝑈)

(1 + 𝑚2)
                                                                     (4.47) 

𝜕𝑉

𝜕𝑡
+ 𝑉

𝜕𝑉

𝜕𝑦
= (

𝜕2𝑉

𝜕𝑧2) − 
𝜕𝑣𝑤

𝜕𝑧
   − 

𝑀2(𝑚𝑈+𝑉)

1 + 𝑚2                                                                                    (4.48) 

𝑃𝑟 (
𝜕𝜃

𝜕𝑡
 + 𝑉

𝜕𝜃

𝜕𝑦
) =   ( 

𝜕2𝜃

𝜕𝑧2)  −Pr
𝜕𝑤𝑇̅̅̅̅̅

𝜕𝑧
                                                                                       (4.49) 

Boundary and initial conditions are, 

𝑡 < 0, 𝑈 = 0, 𝑉 = 0, 𝜃 = 0, 𝑒𝑣𝑒𝑟𝑦𝑤ℎ𝑒𝑟𝑒  

𝑡 ≥ 0, 𝑈 = 0, 𝑉 = 0, 𝜃 = 0, 𝑎𝑡 𝑧 → ∞  

𝑈 = 1, 𝑉 = 0, 𝜃 = 1, 𝑎𝑡 𝑧 = 0  
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4.4 Prandtl Mixing Length Hypothesis 

It is not possible to solve these equations due to the existence of the Reynolds stresses 𝑢𝑤̅̅ ̅̅ , 𝑣𝑤̅̅ ̅̅  

and 𝑤𝑇̅̅ ̅̅  in equations (4.47) and (4.48) and (4.49) respectively. Therefore the need to adopt the 

Boussinesque approximation given as: 

 𝜏𝑡 = −𝜌𝑢𝑣̅̅̅̅  = 𝐴
𝜏
𝑑𝑈

𝑑𝑦

                                                                                                                 (4.50) 

It is worth noting that 𝐴𝜏 is not a fluid property as 𝜇 but depends on mean velocity 𝑈. On the 

other hand , 𝜌𝑢𝑣̅̅̅̅  stands for flux of x- momentum in the y-direction , which is assumed that this 

momentum was transported by eddies which moved in the y-direction over a given distance say ɭ 

with no interaction and then mixed with the existing fluid at the new location i.e momentum is 

taken to be conserved over distance ɭ , (McComb, 1992).  

Prandtl was able to deduce experimentally that: 

𝜌𝑢𝑣̅̅̅̅  = −𝜌ɭ2 (
𝜕𝑈

𝜕𝑦
)
2

                                                                                                                   (4.51) 

At this stage, more assumptions are taken as follows: 

i) 𝑦 > 5, viscous term in shear stress is neglected. 

ii) ɭ = 𝑘𝑦, where 𝑘 is the karman constant given as 𝑘 = 0.4, McComb, (1992). 

On substitutingɭ2, it yields: 

𝜌𝑢𝑣̅̅̅̅  =  𝜌𝑘2𝑦2 (
𝜕𝑈

𝜕𝑦
)
2

 This reduces to 

𝑢𝑣̅̅̅̅  = −𝑘2𝑦2 (
𝜕𝑈

𝜕𝑦
)
2

                                                                                                                  (4.52) 
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From equation (4.52) can be deduced further to give 

𝑢𝑤̅̅ ̅̅  = −𝑘2𝑧2 (
𝜕𝑈

𝜕𝑧
)
2

                                                                                                                 (4.53) 

And, 

𝑣𝑤̅̅ ̅̅  = −𝑘2𝑧2 (
𝜕𝑉

𝜕𝑧
)
2

                                                                                                                 (4.54) 

Considering the turbulent Prandtl number also given by  

𝑃𝑟𝑡 = 
𝜀𝑀

𝜀𝐻
   where 𝜀𝑀 = −2𝑘2𝑧2 𝜕𝑢

𝜕𝑧
 

Thus, 

It can be deduced from (4.52) that 𝑊𝑇̅̅ ̅̅ ̅ = 
− 2𝑘2𝑧2

𝜀𝑀

𝜕𝑢

𝜕𝑧

𝜕𝜃

𝜕𝑧
                                                           (4.55) 

Substituting equations (4.52), (4.53), (4.54) and (4.55) to (4.47), (4.48) and (4.49) yield the 

following set of differential equations as: 

𝜕𝑈

𝜕𝑡
 + 𝑉

𝜕𝑈

𝜕𝑦
= (

𝜕2𝑈

𝜕𝑧2)  +
𝜕

𝜕𝑧
[𝑘2𝑧2 (

𝜕𝑈

𝜕𝑧
)
2

]  +  𝐺𝑟𝜃  + 
𝑀2(𝑚𝑈+ 𝑉)

(1 + 𝑚2)
                                                (4.56)                                                               

 
𝜕𝑉

𝜕𝑡
+ 𝑉

𝜕𝑉

𝜕𝑥
  = (

𝜕2𝑉

𝜕𝑧2)  − 
𝜕

𝜕𝑧
[𝑘2𝑧2 (

𝜕𝑈

𝜕𝑧
)
2

]   − 
𝑀2(𝑚𝑉−𝑈)

1 + 𝑚2                                                             (4.57)                                                                      

 𝑃𝑟 (
𝜕𝜃

𝜕𝑡
 + 𝑉

𝜕𝜃

𝜕𝑦
) =   ( 

𝜕2𝜃

𝜕𝑧2)  +𝑃𝑟 (
2𝑘2𝑧2

𝑃𝑟𝑡

𝜕𝑢

𝜕𝑧

𝜕𝜃

𝜕𝑧
)                                                                        (4.58)  

Equations (4.56) and (4.57) can be simplified further and then the final set of the governing 

equations given as: 
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𝜕𝑈

𝜕𝑡
 + 𝑉

𝜕𝑈

𝜕𝑦
= (

𝜕2𝑈

𝜕𝑧2) +2𝑘2z (
𝜕𝑈

𝜕𝑧
)
2

+ 2𝑘2𝑧2 (
𝜕2𝑈

𝜕𝑧2) (
𝜕𝑈

𝜕𝑧
)  +  𝐺𝑟𝜃  + 

𝑀2(𝑚𝑈+ 𝑉)

(1 + 𝑚2)
                      (4.59)                                                                                                                                                     

𝜕𝑉

𝜕𝑡
+ 𝑉

𝜕𝑉

𝜕𝑦
= (

𝜕2𝑉

𝜕𝑧2)   + 2𝑘2z (
𝜕𝑉

𝜕𝑧
)
2

+ 2𝑘2𝑧2 (
𝜕2𝑉

𝜕𝑧2) (
𝜕𝑉

𝜕𝑧
)   − 

𝑀2(𝑚𝑉−𝑈)

1 + 𝑚2                                     (4.60)  

 𝑃𝑟 (
𝜕𝜃

𝜕𝑡
 + 𝑉

𝜕𝜃

𝜕𝑦
) =   ( 

𝜕2𝜃

𝜕𝑧2) + 𝑃𝑟 (
2𝑘2𝑧2

𝑃𝑟𝑡

𝜕𝑢

𝜕𝑧

𝜕𝜃

𝜕𝑧
)                                                                        (4.61)                                 

Equations (4.59), (4.60) and (4.61) represent the final set of the governing equations. The next 

step is the determination of the numerical solution to these governing equations subject to the 

initial and boundary conditions given below. 

4.5 Boundary And Initial Conditions 

t< 0 , U= 0, V= 0, 𝜃 = 0, everywhere 

𝑡 ≥ 0, 𝑈 = 0, 𝑉 = 0, 𝜃 = 0, at 𝑧 → ∞ 

𝑈 = 1, 𝑉 = 0, 𝜃 = 1, at  𝑧 = 0 

4.6. Explicit Finite Difference Scheme 

The explicit finite difference scheme is employed in the solution of these governing equations 

(4.59), (4.60) and (4.61) since they are highly non-linear. The mesh shown in figure 3.1 and the 

equivalent Finite difference Scheme for these governing equations are respectively given as:    

𝑈(𝑖,𝑗+1)−𝑈(𝑖,𝑗)

∆𝑡
+ 𝑉(𝑖,𝑗)

𝑈(𝑖+1,𝑗)−𝑈(𝑖,𝑗)

∆𝑦
   =  ( 

𝑈(𝑖+1,𝑗)−2𝑈(𝑖,𝑗) + 𝑈(𝑖−1,𝑗)

(∆𝑧)2
) +  0.32ί∆𝑧 (

𝑈(𝑖+1,𝑗) − 𝑈(𝑖,𝑗)

∆𝑧
)
2

+

0.32(ί∆𝑧)2 (
𝑈(𝑖+1,𝑗)−2𝑈(𝑖,𝑗) + 𝑈(𝑖−1,𝑗)

(∆𝑧)2
) (

𝑈(𝑖+1,𝑗) − 𝑈(𝑖,𝑗)

∆𝑧
) + 𝐺𝑟𝜃ί,𝑗  + 𝑀2 (

𝑚𝑉(𝑖,𝑗)− 𝑈(𝑖,𝑗) 

1+𝑚2 )                 (4.62)                                                                                                                 
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𝑉(𝑖,𝑗+1)−𝑉(𝑖,𝑗)

∆𝑡
+ 𝑉(𝑖,𝑗)

𝑉(𝑖+1,𝑗)−𝑉(𝑖,𝑗)

∆𝑦
   =  ( 

𝑉(𝑖+1,𝑗)−2𝑉(𝑖,𝑗) + 𝑉(𝑖−1,𝑗)

(∆𝑧)2
) +  0.32ί∆𝑧 (

𝑉(𝑖+1,𝑗) − 𝑉(𝑖,𝑗)

∆𝑧
)
2

+

0.32(ί∆𝑧)2 (
𝑉(𝑖+1,𝑗)−2𝑉(𝑖,𝑗) + 𝑉(𝑖−1,𝑗)

(∆𝑧)2
) (

𝑉(𝑖+1,𝑗) − 𝑉(𝑖,𝑗)

∆𝑧
) + 𝐺𝑟𝜃ί,𝑗  + 𝑀2 (

𝑚𝑈(𝑖,𝑗)+ 𝑉(𝑖,𝑗) 

1+𝑚2
)                  (4.63)   

                                                                                                                                                                                                         

𝑃𝑟 (
𝜃(𝑖,𝑗+1)−𝜃(𝑖,𝑗)

∆𝑡
 +  𝑉𝑖,𝑗

𝜃𝑖+1,𝑗 − 𝜃𝑖,𝑗

∆𝑦
) = (

𝜃(𝑖+1,𝑗)−2𝜃(𝑖,𝑗)+𝜃(𝑖−1,𝑗) 

∆𝑧2
) + 

0.32(ί∆𝑧)2 𝑃𝑟

𝑃𝑟𝑡
{(

𝑈(𝑖+1,𝑗) − 𝑈(𝑖,𝑗)

∆𝑧
) (

𝜃(𝑖+1,𝑗)−𝜃(𝑖,𝑗)

∆𝑧
)}                                                                         (4.64)                                                                                                              

In this case, 𝑘 = 0.4, 𝑧 = ί∆𝑧 and ί and j refer to 𝑧 and 𝑡 respectively. 

The initial and boundary conditions will now take the form given as: 

𝑈ί,𝑗 = 0; 𝑉ί,𝑗 = 𝑂; 𝜃ί,𝑗 = 0 Everywhere for j < 0                                                                    

j ≥ 0; 𝑈ί,𝑗 = 0; 𝑉ί,𝑗 = 0; 𝜃ί,𝑗 = 0 For 𝑖 = ∞                                                                          (4.65) 

𝑈ί,𝑗 = 1; 𝑉ί,𝑗 = 0; 𝜃ί,𝑗 = 1 For ί = 0                                                                                       

The computation for the consecutive grid points for primary and secondary velocitie and 

temperature can now be done using the initial and boundary conditions (4.65), that is 𝑈(𝑖,𝑗+1),  

𝑉(𝑖,𝑗+1) 𝑎𝑛𝑑   𝜃(𝑖,𝑗+1) .   

𝑈(𝑖,𝑗+1)  = 𝑈(𝑖,𝑗) + ∆𝑡 { −𝑉(𝑖,𝑗)
𝑈(𝑖+1,𝑗)−𝑈(𝑖,𝑗)

∆𝑦
 + ( 

𝑈(𝑖+1,𝑗)−2𝑈(𝑖,𝑗) + 𝑈(𝑖−1,𝑗)

(∆𝑧)2
)  +

 0.32ί∆𝑧 (
𝑈(𝑖+1,𝑗) − 𝑈(𝑖,𝑗)

∆𝑧
)
2

 + 0.32(ί∆𝑧)2 (
𝑈(𝑖+1,𝑗)−2𝑈(𝑖,𝑗) + 𝑈(𝑖−1,𝑗)

(∆𝑧)2
) (

𝑈(𝑖+1,𝑗) − 𝑈(𝑖,𝑗)

∆𝑧
)  +  𝐺𝑟𝜃ί,𝑗  +

 𝑀2 (
𝑚𝑉(𝑖,𝑗)− 𝑈(𝑖,𝑗) 

1+𝑚2 ) }                                                                                                   (4.66)                                                                                             
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𝑉(𝑖,𝑗+1) =  𝑉(𝑖,𝑗) + ∆𝑡{ − 𝑉(𝑖,𝑗)
𝑉(𝑖+1,𝑗)−𝑉(𝑖,𝑗)

∆𝑦
 + ( 

𝑉(𝑖+1,𝑗)−2𝑉(𝑖,𝑗) + 𝑉(𝑖−1,𝑗)

(∆𝑧)2
) +  0.32ί∆𝑧 (

𝑉(𝑖+1,𝑗) − 𝑉(𝑖,𝑗)

∆𝑧
)
2

      

+0.32(ί∆𝑧)2 (
𝑉(𝑖+1,𝑗)−2𝑉(𝑖,𝑗) + 𝑉(𝑖−1,𝑗)

(∆𝑧)2
) (

𝑉(𝑖+1,𝑗) − 𝑉(𝑖,𝑗)

∆𝑧
)  +  𝐺𝑟𝜃ί,𝑗  +  𝑀2 (

𝑚𝑈(𝑖,𝑗)+ 𝑉(𝑖,𝑗) 

1+𝑚2 )}   (4.67)                                   

𝜃𝑖,𝑗+1  = 𝜃(𝑖,𝑗) + ∆𝑡 {− 𝑉𝑖,𝑗
𝜃𝑖+1,𝑗 − 𝜃𝑖,𝑗

∆𝑦
+ 

1

𝑃𝑟
 [(

𝜃(𝑖+1,𝑗)−2𝜃(𝑖,𝑗)+𝜃(𝑖−1,𝑗) 

∆𝑧2 ) +

 0.32(ί∆𝑧)2 𝑃𝑟

𝑃𝑟𝑡
{(

𝑈(𝑖+1,𝑗) − 𝑈(𝑖,𝑗)

∆𝑧
) (

𝜃(𝑖+1,𝑗)−𝜃(𝑖,𝑗)

∆𝑧
)} ]}                                                                    (4.68)    

 4.7 Stability of Explicit Finite Difference Scheme   

In order to judge the accuracy of convergence of explicit finite difference scheme, we will 

consider at least two or more values of ∆𝑡, for instance 0.0009, 0.001 and other significant 

change that may be noticed. If at all instances there is no difference in their values, then the 

explicit finite difference scheme is stable and convergent.                                             

4.8 Discussion of Results 

Graphical presentation of the numerical results of the discretized governing equations from 

MATLAB is done in this section. Various fluid parameters were varied on primary velocity,U, 

secondary velocity, V, and temperature,𝜃, profiles and then discussed. In all these simulations, 

for both positive and negative Grashof numbers; 𝑃𝑟𝑡 = 0.85 and 𝐾 = 0.4, where 𝐾 is von 

Karman constant and 𝑃𝑟𝑡 is the turbulent Prandtl number. 

4.8.1 Cooling of the Plate 

In this case the fluid flow is at alower temperature than the plate itself. This is implied by the 

positive Grashof number (𝐺𝑟 > 0), therfore the plate loose heat to the surrounding.  
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                      Figure 4.2: Primary velocity profile for Hall current 

From  this figure, it can be shown that Hall current has little significance to primary velocity. 

However, primary velocity decreases with decrease in Hall parameter. This may be attributed to 

the fact that for a small value of m, the term 
1

1+𝑚
 will in turn increases the resistive force of the  

applied magnetic parameter thus reducing the primary velocity. 
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                           Figure 4.3: Primary velocity profile for Magnetic parameter 

Figure 4.3 clearly shows that primary velocity decreases with increase in magnetic parameter. 

Magnetic parameter, M, refers to the ratio of the magnetic force to inertial force therefore higher 

M means higher magnetic force acting perpendicularly on an electrically conducting fluid hence 

developing Lorentz force which is an opposing force to fluid motion thus decreasing the primary 

velocity.  
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                               Figure 4.4: Primary velocity profile for Prandtl number 

Considering figure 4.4, primary velocity decreases with increase in Prandtl number, 𝑃𝑟, though 

in a smaller extent. This is because increased Prandtl number leads to increase in viscosity 

making the fluid more thick thus leading to a decrease in primary velocity. 
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                           Figure 4.5: Secondary velocity profile for Hall parameter 

Figure 4.5 shows a significant decrease in secondary velocity with decrase in Hall parameter,𝑚. 

Considering the model equation, and the fact that for any value of 𝑚, in the term 
1

1+𝑚2  will 

decrease the negative value of 𝑀2 which will in turn decrease the secondary velocity. The 

decrease in the negative value of 𝑀2 means an increase in magnetic force in an electrically 

conducting fluid thus developing Lorentz force which opposes fluid motion. 
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                         Figure 4.6: Secondary velocity profile for magnetic parameter 

From figure 4.6, it is observed that secondary velocity was increased first at the beginning but 

later was decrease with an increase in magnetic parameter, 𝑀. This is because at the beginning, 

Lorentz force decelerated the primary velocity but increased the lateral flow which in this case is 

the secondaey velocity. The secondary velocity later decreased with increase in magnetic 

parameter  because of the reduction of the magnetic force by the Hall current. 
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                                  Figure 4.7: Secondary velocity profile for prandtl number 

Clearly, figure 4.7 depicts a decrease in secondary velocity with an increase in Prandtl number. 

This is due to increased viscosity of the fluid hence decreasing the secondary velocity.  
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                                    Figure 4.8: Temperature profile for Hall parameter 

Figure 4.8 clearly shows that there is no significant change in temperature as the Hall parameter 

is varied. However, the small change shows that the temperature, 𝜃, of the fluid flow decreases 

with decrease in Hall parameter. 

 

 

 

 



50 

 

 

                                Figure 4.9: Temperature profile for magnetic parameter 

From figure 4.9, it shows there is no significant temperature change with variation in magnetic 

parameter. However, the small change indicates that there is a decrease in temperature profile 

with increase in magnetic parameter. 
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                              Figure 4.10: Temperature profile for Prandtl number  

Figure 4.10 shows that there is a decrease in temperature profile with an increase in prandtl 

number . since prandtl number is the ratio of momentum diffusivity to thermal diffusivity, thus 

increased prandtl number means lower thermal diffusivity in comparison to momentum 

diffusivity hence decreasing thermal boundary layer which will in turn decreases the temperature 

distribution of the fluid. 

4.8.2 Heating of the Plate 

The surrounding fluid in this case is at a higher temperature than the plate itself meaning the 

plate has a lower temperature. This is shown by the negative values of 𝐺𝑟, that is 𝐺𝑟 < 0. 
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                               Figure 4.11: Primary velocity profile for Hall parameter 

Considering figure 4.11, decrease in Hall parameter leads to a decrease in primary velocity. This 

is because for a smaller value of 𝑚, substituted to the term 
1

1+𝑚
  will increase magnetic force 

which will in turn increases resistive force of the applied magnetic parameter hence decreasing 

the primary velocity. 
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                            Figure 4.12: Primary velocity profile for Magnetic parameter 

With respect to figure 4.12, primary veocity decreases with increase in magnetic parameter. This 

is attributed to Lorentz force generated by a higher magnitude of the magnetic force acting on an 

electrically conducting fluid hence decreasing the primary velocity. 
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                                  Figure 4.13: Primary velocity profile for Prandtl number 

Figure 4.13 indicates that primary velocity decreases with decrease in prandtl number. This is 

attributed to the fact that prandtl number being a ratio of momentum(product of unit ofmass and 

velocity)  to thermal diffusivity , therefore lower prandtl number means thermal diffusivity 

dominates momentum leading to a decrease in primary velocity. 
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                             Figure 4.14: Secondary velocity profile for Hall Parameter  

Figure 4.14 shows that secondary velocity decreases significantly with a decrease in Hall 

parameter,𝑚. This is because for a smaller value of 𝑚, the term in 
1

1+𝑚
  will have a small impact 

in the value of 𝑀2 as oppose to decreasing magnetic force if there was an increase in 𝑚. This 

will mean that Lorentz force is maintained at a higher value thus decreasing the secondary 

velocity. 
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                  Figure 4.15: Secondary velocity profile for Magnetic parameter 

Figure 4.15 illustrates that secondary velocity was accelerated first with increase in magnetic  

parameter  but later decelerated with an increase in magnetic parameter. This is attributed to the 

fact that increase in magnetic parameter leads to a decrease in primary velocity but increase the 

lateral flow which is the secondary velocity. However, after some time , the secondary velocity 

decreased significantly with increase in magnetic parameter because of the reduction of the 

magnetic force by the Hall parameter. 
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                            Figure 4.16: Secondary velocity profile for Prandtl number 

Secondary velocity decreases with decrease in prandtl number as shown in figure 4.16. This is 

due to the negative 𝐺𝑟. Decrease in Grashof number implies a decrease in buoyancy force which 

is responsible for accelerating the fluid motion thus leading to the decrease in secondary 

velocity. 
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                                    Figure 4.17: Temperature profile for Hall parameter 

According to figure 4.17, there is no significance change in temperature when the Hall parameter 

is decreased. However, there is anegligible decrease in temperature with decrease in Hall 

parameter. 
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                               Figure 4.18: Temperature profile for Magnetic parameter 

Figure 4.18 shows that there is no significant temperature change when magnetic parameter is 

decreased. 
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                                  Figure 4.19: Temperature profile Prandtl number 

From figure 4.19, it clearly indicates a decrease in temperature profile when Prandtl number is 

increased. This is attributed to the fact that 𝑃𝑟, being the ratio of momentum diffusivity to 

thermal diffusivity means there is lower thermal diffusity in comparison to momentum 

diffusivity hence decreasing the temperature profile,𝜃. 
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4.9 Validation of results 

These results when compared with those of Kwanza et.al (2010) who developed a mathematical 

model of turbulent convective fluid flow past an infinite vertical plate with Hall current in a 

dissipative fluid and found out that an increase in Hall current leads to an increase in velocity 

profiles. These results are in agreement with the findings of this research. Comparison also with 

Mukuna et.al (2020) who modeled a Hydromagnetic free covection turbulent fluid flow over a 

vertical infinite plate using turbulent prandtl number. They found out that there is an increase in 

primary velocity whenever magnetic parameter is decreased, Hall parameter is increased and 

when Grashof number is increased. It was also evident that secondary velocity increases when 

magnetic parameter is decreased and decreases when Hall parameter is increased. They also 

found out that temperature profile decreases when magnetic parameter is decreased, decreases 

when Hall parameter is increased and also increases when prandtl number decreases. These 

results also agree with the findings of this research.  
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CHAPTER FIVE 

SUMMARY,CONCLUSIONS AND RECOMMENDATIONS 

5.1 Introduction 

In this chapter, the summary of the findings are made based on the objectives of the study which 

is the modeling and analysis of magnetohydrodynamic free convection turbulent fluid flow past 

an infinite vertical porous plate. Conclusions are made based on the research findings and 

recommendations are suggested for further research. 

5.2 Summary 

The study sought to model and analyze magnetohydrodynamic free convection turbulent fluid 

flow past an infinite vertical porous plate. The Explicit Finite Difference Scheme was used to 

solve the problem. The developed model proved to be working and the result analysis showed 

that the findings are in line with the objectives. 

5.3 Conclusions 

The modeling and analysis of magnetohydrodynamic free convection turbulent fluid flow past an 

infinite vertical porous plate investigated numerically. The effects of flow parameters like 

Grashoff numbers,𝐺𝑟, Prandtl number,𝑃𝑟, magnetic parameter, 𝑀, and Hall parameter, 𝑚, on 

mean primary velocity, 𝑈, secondary velocity, 𝑉, and temperature profile, 𝜃, obtained. In each 

case, 𝑃𝑟𝑡 = 0.85, and 𝐾 = 0.4. The results are summarized as follows: 

a) A mathematical model that is working developed for a MHD fluid flow using 

conservation of mass, energy and momentum equations for a flow that is turbulent and 

past a vertical infinite porous plate. 
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b) The partial differential equations associated with the model were numerically solved 

using the explicit finite difference scheme and the graphical presentations of velocities 

and temperature profiles given. 

c) The velocities and temperature profiles for various flow parameters were analyzed and it 

was found that: 

i) During both the cooling and heating of the plate (𝐺𝑟 > 0, 𝑎𝑛𝑑 𝐺𝑟 < 0), the primary 

velocity decreases with decrease in Hall parameter,𝑚, and increase in magnetic 

parameter, 𝑀. It also decreases during cooling of the plate as the Prandtl number, 𝑃𝑟, 

is increased and even during the heating of the plate as the Prandtl number, 𝑃𝑟, is 

decreased.  

ii) During both the cooling and heating of the plate (𝐺𝑟 > 0, 𝑎𝑛𝑑 𝐺𝑟 < 0), the secondary 

velocity decreases with decrease in Hall parameter, 𝑚, and increase in magnetic 

parameter, 𝑀. It also decreases during cooling of the plate as the Prandtl number, 𝑃𝑟, 

is increased and also during heating of the plate as the Prandtl number, 𝑃𝑟, is 

decreased. 

iii) There is NO significant effect on temperature profile, 𝜃, during both cooling and 

heating of the plate as the Hall parameter, 𝑚, is decreased. There is also NO 

significant change during the cooling of the plate as the magnetic parameter, 𝑀, is 

increased and even during the heating of the plate as the magnetic parameter, 𝑀, is 

decreased.  

There is decrease in temperature profile when Prandtl number, 𝑃𝑟, is increased in 

both the cooling and heating of the plate. 
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5.4 Recommendations 

The following recommendations are made based on these findings: 

i) Adoption of the MHD model due to its significance in the field of medicine, 

engineering and technology as well as security sector. This will inform the progress 

of development in our society and the country at large. 

ii) The use of explicit finite difference scheme for the solution of PDEs that are highly 

non-linear because of its level of accuracy since it is stable and convergent. 

iii) The use of flow parameters like Prandtl number, Grashof number, Hall parameter, 

magnetic parameter and turbulent prandtl number since it is able to analyze the 

velocities and temperature profiles appropriately. 

5.5 Suggestions for further Research 

There is still alot of research that can be done on MHD turbulent fluid flows therefore the 

following recommendations are made to further the research on this topic: 

a) Fluid flow that is compressible 

b) Considering a cylindrical plate. 

c) Considering magnetic field inclined at an angle. 

d) Using other methods to resolve turbulent stresses other than Prandtl mixing lenght 

hypothesis. 
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APPENDICES  

 

 

Appendix I: MATLAB CODE 

function MHD_TurbFlow() 

clear all;clc;%close all; 

global M m Pr Prt K Gr 

z0=0;zInf=6;nz=150;dz=(zInf-z0)/(nz); 

t0=0;tend=1;nt=2000;dt=(tend-t0)/(nt); 

z=z0:dz:zInf; 

t=t0:dt:tend; 

 

%% parameters specification 

M=2;      % 1.5, 2, 2.5; 

Pr=3.5;    % 1.7, 3.5, 7; 

Gr=-0.5;     % -1,-0.5, 0.5, 1 

m=0.5;      % 0.2, 0.3, 0.5 

color='--k';  % blue(b)-I,red(r)-II,black(k)-III,magenta(m)-IV; 

Prt=0.85;   K=0.4;   

 

u=zeros(nz,nt);v=zeros(nz,nt);theta=zeros(nz,nt); 

%% initial and boundary conditions 

u(:,1)=0;v(:,1)=0;theta(:,1)=0;%IC 

 

u(1,:)=1;v(1,:)=0;theta(1,:)=1;%BC at z=0 

u(nz,:)=0;v(nz,:)=0;theta(nz,:)=0;%BC at z=Inf 

 

%% implememtation of Finite Difference Method 

for j=1:nt 

    for i=2:nz-1 

        u(i,j+1)=u(i,j)+dt*Uvelocity(u(i+1,j),u(i,j),u(i-

1,j),v(i+1,j),v(i,j),v(i-1,j),theta(i,j),i,dz); 

        v(i,j+1)=v(i,j)+dt*Vvelocity(u(i+1,j),u(i,j),u(i-

1,j),v(i+1,j),v(i,j),v(i-1,j),theta(i,j),i,dz); 

        theta(i,j+1)=theta(i,j)+dt*Temp(theta(i+1,j),theta(i,j),theta(i-

1,j),u(i+1,j),v(i,j),u(i-1,j),v(i+1,j),v(i-1,j),i,dz); 

         

    end 

end 

 

%% plotting of the results 

figure(1) 

mesh(t(2:nt-1),z(2:nz-1),u(2:nz-1,2:nt-1)) 

figure(2) 

mesh(t(2:nt-1),z(2:nz-1),v(2:nz-1,2:nt-1)) 

figure(3) 

mesh(t(2:nt-1),z(2:nz-1),theta(2:nz-1,2:nt-1)) 

figure(4) 

hold on 

plot(z(1:nz),u(1:nz,nt),color,'linewidth',1) 

xlabel('Distance Z');ylabel('Primary Velocity, U') 
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hold off 

figure(5) 

hold on 

plot(z(1:nz),v(1:nz,nt),color,'linewidth',1) 

hold off 

xlabel('Distance Z');ylabel('Secondary Velocity, V') 

figure(6) 

hold on 

plot(z(1:nz),theta(1:nz,nt),color,'linewidth',1) 

hold off 

xlabel('Distance Z');ylabel('Temperature, \theta') 

%% prescription of the sub-functions 

    function URHS=Uvelocity(uipj,uij,uimj,vipj,vij,vimj,thetaij,index,dz) 

        URHS=(-(uipj*vipj-uimj*vimj)/(2*dz))+((uipj-

2*uij+uimj)/(dz*dz))+2*K*K*index*dz*(((uipj-uimj)/(2*dz))^2)... 

        +2*K*K*((index*dz)^2)*((uipj-2*uij+uimj)/(dz*dz))*((uipj-

uimj)/(2*dz))+Gr*thetaij-M*M*(uij+m*vij)/(1+m*m); 

    end 

    function VRHS=Vvelocity(uipj,uij,uimj,vipj,vij,vimj,thetaij,index,dz) 

        VRHS=(-(vipj*vipj-vimj*vimj)/(2*dz))+((vipj-

2*vij+vimj)/(dz*dz))+2*K*K*index*dz*(((vipj-vimj)/(2*dz))^2)... 

        +2*K*K*((index*dz)^2)*((vipj-2*vij+vimj)/(dz*dz))*((vipj-

vimj)/(2*dz))+Gr*thetaij-M*M*(vij-m*uij)/(1+m*m); 

    end 

    function 

TRHS=Temp(thetaipj,thetaij,thetaimj,uipj,vij,uimj,vipj,vimj,index,dz) 

        TRHS=(-(thetaipj*vipj-thetaimj*vimj)/(2*dz))+(1/Pr)*((thetaipj-

2*thetaij+thetaimj)/(dz*dz))... 

            -2*K*K*((index*dz)^2)*(1/Prt)*((uipj-uimj)/(2*dz))*((thetaipj-

thetaimj)/(2*dz)); 

    end 

end 
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Appendix II: Clearance to commence field work 

 

               

 

 

UNIVERSITY OF KABIANGA 

ISO 9001:2015 CERTIFIED 

OFFICE OF THE DIRECTOR, BOARD OF GRADUATE STUDIES 

REF: PGC/AM/0002/17                                                     DATE: 21ST SEPTEMBER, 2021 

Wesley Cheruiyot Kemboi,  

MAPS, 

University of Kabianga, 

P.O Box 2030- 20200, 

KERICHO.  

Dear Mr. Kemboi,   

RE:   CLEARANCE TO COMMENCE FIELD WORK  

I am glad to inform you that the Board of Graduate Studies during its meeting on 

14th July 2021 approved your research proposal entitled “Modeling and Analysis 

of Magnetohydrodynamic Free Convection Turbulent Fluid Flow Past an Infinite 

Vertical Porous Plate”. 

I am also acknowledging receipt of your corrected proposal via email and hard 

copies. You are now free to commence your field work on condition that you 

obtain a research permit from NACOSTI. 

Please note that, you are expected to publish at least one (1) paper in a peer 

reviewed journal before final examination (oral defense) of your 

Mastersthesis.Thank you. 

Yours Sincerely, 

 

 

 

 

 

DIRECTOR, BOARD OF GRADUATE STUDIES. 

JKK/hk 

CC:-    

1. Dean, SST 

2. HOD, MAPS 

3. Supervisors 
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