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Abstract

The study of perfect codes has attracted a lot of interest among researchers in coding theory in view of
the fact that many authors have indicated that this type of codes is rare. These codes are considered the
best for theoretical and practical reasons. In this paper we demonstrate the determination of perfect
codes from ideals of polynomial rings and characterize them for error control in computer applications.
GAP software has been used to generate these codes and to confirm that they are indeed perfect. The
Mathematical Structure of the generating polynomial ring has been fully discussed and the
corresponding perfect codes have been characterized.
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1. Introduction

1.1. Background Information

Error control coding started in the late 1940s, by Shannon [1], Hamming [2] and Golay [3]. Shannon
introduced the basic theory on bounds for communication. He showed that it is possible to get arbitrarily
low error probability using coding on any channel, provided that the bit-rate is below a channel-specific
parameter called the capacity of the channel. He did not, however, show how that could be accomplished.
His paper gave rise to at least two research fields, namely Information Theory which mainly deals with
bounds on performance, and Coding Theory which deals with methods to achieve good communication
using codes. Hamming published his construction of a class of single-error-correcting binary codes in
1950. Golay published a generalization of the construction to any alphabet of prime size. Both Hamming’s
original binary codes and Golay’s generalizations are called Hamming codes.

The discoveries made by Hamming and Golay initiated research activities among mathematicians
who were interested in investigating the algebraic and combinatorial aspects of codes. Coding Theory
consists of two parts; code construction and development of decoding methods.

The history of error control coding can be broadly divided into two; pre-turbo code and post-turbo
code. Turbo codes and their respective decoders were invented by Claude and Alain [4]. Prior to this
invention, no one really knew how to get close to the theoretical performance limits promised by Shannon.
Algebraic codes such as Reed-Solomon [5] and BCH codes [6] build algebraic structure into the code such
that the code can be decoded using computationally efficient algorithms for solving systems of equations.
All error control codes are based on one basic principle: that is redundancy is added to information in
order to detect and correct any errors. MacKay and Neal [7] were able to show that Low Density Parity
Codes can get as close to Shannon limit as turbo codes. Richardson et al. [8] showed that irregular LDPC
codes can outperform turbo codes of approximately the same length and rate when the block length is
large.

Today the theory of error control codes is well developed. A number of efficient codes have been
constructed. Although most of the applications of our work are classical as obseved by Huffman and Pless
[9], some of the real life applications of error control codes include and not limited to modern
communication, such as digital radio and television, cellphone communication, computer networks,
mobile money transfer (M-Pesa), M-Banking and deep space communication. According to Hall [10] most

newer constructions are not readily adapted to instruments like discs, computer memories and others. A lot
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of research in computer software and hardware is ongoing in order to make use of newer results. That is
why computer size is reducing with time while its data processing capacity is increasing.
Huffman and Pless [9] studied cyclic codes and polynomials in indeterminate x over a field F .

They realised that every cyclic code consists of polynomials as well as code words. Hall [10] showed that

every codeword a=(a ,,a ,,...,a,,a,,)e F". Since ce C, c=(c,,c,...c ,,,¢,,)€ C and
c=(C , ,,C 4sC seC ,3,C, ,)EC, wWhere ¢ is a shifted codeword. Hence c(x)=x c(x)—c , ,
(x"—=1) = c(x) hasdegree<n and is equal to remainder when xc(x) is divided by (x" —1). That
is c(x)=xc(x) mod (x" —1) = ¢(x) and xc(x) are equal in the ring of polynomials F [ x ]Jmod
(x" —1) where arithmetic is done modulo the polynomial x" —1. Prange [11] showed that for each
polynomial f (x) € F[x], f(x)e Cmod(x"—1). By linearity V a , € F,ax' ¢(x)e Cmod

(x"=1)), and £ a,x ' c(x)e Cmod(x"—1) € F[x]mod (x" —1) According to Prange [11] these
results point to the fact that the polynomial rendering of a cyclic code is an ideal of the polynomial ring
F[x]Mod(x" —12) . Peterson and Weldon [12] examined the concept of codes within a binary field and

realised that for a code to be used for computer applications it must be binary or easily convertible into the

binary alphabet.

2. The Results

Proposition 2.1 [13]

>t+1. The

Acode C of length n over F)'[x]mod(x"—1) can detect t errors if and only if d >

code C cancorrect ¢ errorsifand onlyif d, >2¢+1.
Proof

The condition d(c) >t+1 means that a message at Hamming distance at most ¢ from an element

¢ of C and distinct from ¢ does not belong to C. That is C can detect ¢ errors. For the second

part of the Proposition, assume first that d, >2¢+1. Let x € F}'[x]mod (x" —1) and let ¢,c, eC
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satisfy d(x,,¢,)<t and d(x,,c,)<t then by triangle inequality d(c,,c,)<q2t<d,, . Therefore
C =c,.

Conversely assume d|,, <2t there is a no zero element ¢ € C with w(¢)<2¢ , hence ¢ has at
most 2¢ non-zero components. Split the set of indices of the the non-zero components of cinto two
disjoint subsets I, and /, having at most ¢ elements. Define x € F,'[x]mod(x" —1) as the point

having the same components x, as ¢ for i€/, and O for i¢/,. Then x is in the Hamming ball of

centre ¢ andradius f.

2.1. Selection of Candidate Polynomial

This paper identifies the polynomial ring F)’ [x] mod (x” —1) as one capable of providing
polycodewords of any length 7. The choice of n depends on the desired application. To demonstrate
this we consider the polynomial ring F,’ [x] mod (x" - 1) in which 1<#n <31. The results obtained are
generalised to all polycodewords of length #n  generated by the polynomial ring
E [x]mod (x” —I)Vn € N. A code is suitable for error control if and only if it can correct at least one
error.

Table 2.1.1. Factorization of x" —1,1<n <31 over F,

n (x" +1) | Irreducible Polynomial Factors (over I, )

1 (x+1) x+1

2 (xX*+1) | (x+1)

3 (X +1) | (x+D(+x+1)

4 (x4 +1) (x+ 1)4

5 X+ | (x+DXP X+ X7 +x+1)
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6 (xX°+1D) | (x+1)* (% +x+1)
7 X"+ | (x+ D +x+ D +x7+1)
8 &+ | (x+1)°
9 (X +1) | (x+D( +x+1)(x° +x° +1)
10 | X+ | x+D)’ P+ +xP+x+1)
11 @D | DX T A A X x4 ])
12 | %+ | x+D' (> +x+D)*
13 GPHD) | D XX X X X x+])
14 | M+ | (+D) (0 Fx D) +x7 +1)
15 P+ | (x+D7 Hx+D Fx D)t 0 D+ X+ x+])
16 (x+1) | (x+D'°
17 X7+ | DA xR D X X x +D)
18 | (X" +1) | (x+1D)*(x7 +x+D)*(x +x +1)°
19 | X"+ | (x+D(® XX+ L+ x+])
20 x*+D) | c+ D' XX+ x4+
. o 1) (x6+ 1)(5x2 +:c+lz(x3 +x62 +lz(x3 erx+1)
(X" +x+x +x -D(x"+x"+x" +x+1)
22 | (X4 | (x+D)(x+ X+ x4
23 P+ | DM X D XXX xR 4]
24 | (X 4D | (x+D* (P +x+D)°

583
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25 P+ | DX X+ D) X X x4 )

2 (x+D (P +x" x4+ X Xy
26 (x +1) 6 5 4 3 2 2
+xX"+ X+ X+ X +x +x+1)

27 x4+ | e+ DX D+ D +x+1)

28 4D | x+ D) +x+D) (PP D!

29 | (X741 | (x+DEF x4+ x+])

30 X+ | D)+ D) D) A D) X X x4+ D)

x+DXC+X =D+ + D + X7 + X7+ x+1)
31 (x*+1)
(Pt x+ D X X D xR 4D

Table 2.1.1 was prepared using an online tool, www.quickmath.com. Each of the factors is irreducible.
These factors are the generator polynomials and principal ideals of the corresponding polynomial ring.

Hamming Bound (Sphere Packing Bound 2.1.1) [10]

If C is an m-ary e-error-correcting code of length 7, then

n

m
>y

A code which satisfies this bound with equality is called a perfect code.

Proposition 2.1.2 [14]

|Cl=

A binary repetition code of length n with n odd is perfect.
Proof

Let C={a,=000..00,, =111...11} be of length n. Any vector x €F, has ¢ coordinates I,
and n—t coordinates 0. So d(x,o,)=t and d(x,a)=n—t. Hence if <% then x is uniquely
decoded as ¢, where as, if ¢ >4, then x isuniquely decoded as ¢, .Hence C is perfect.

C detects n—1 errors and corrects "T‘l erTors.

From proposition 2.1.2 rather than analyze all the repetition codes of length n for 1<n <31 we
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can concentrate on those with odd 7.

Table 2.1.2. Generator Polynomials of F,[x]mod (x—1)

Generator Polynomial

Corresponding Codeword

0

0

1

1

The codes in C are ideals of the polynomial ring

Fy[x]mod (x=1) m=2,n=1W, =1,d, =1,(n,m,d) = (1,2,1),C =[0,1]

585

By proposition 2.1 this code can neither detect nor correct any errors. It is not suitable for error

control.

Table 2.1.3. Generator Polynomials of F,'[x]mod (x3 —1)

Generator Polynomial| Corresponding Codeword
0 000

1 001

X 010

x’ 100

I+x 110

x+x 011

1+x° 101

X +x+1 111

The codes in C are ideals of the polynomial ring F; [x]m()d(x3 —1) m=8,n=3, W =3,d =3,

(n,m,d)=(3,8,3), C=[000,001,010,100,110,011,101,111].

By proposition 2.1 this code can detect two errors. It can correct only one error. It is suitable for error

control.
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Table 2.1.4. Generator Polynomials of F,’[x]mod (x5 - 1)

Generator Polynomial | Corresponding Codeword
0 00000

1+x 00011

1+ x° 00101

x4+ x? 00110

X24+x 01100

x+x° 01010

x3 + x4 11000

l+x+x"+x +x* 11111

The codes in C are ideals of the polynomial ring F, [x]mod(xs—l) m=8 n=5 W, =35,

d =5, (n,m,d)=(58,5), C=[00000,00011,00101,00110,01100,01010,11000,11111].

By proposition 2.1 this code can detect four errors. It can correct two errors. It is therefore suitable

for error control.

Table 2.1.5. Generator Polynomials of F} [x]mod (x7 - 1)

Generator Polynomial Corresponding Codeword
0 0000000
1 0000001
x+1 0000011
X +x+1 0001011
x+x’+1 0001101
x4+ xt 1 0011101
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X rxt+x+1

0010111

XX +xr 7 +x+1

1111

The codes in C are ideals of the polynomial ring

F; [x]mod(x7 —1) m=8n=7W =7,d =7,(n,m,d)=(7,8,7),

C =[0000000,0000001,0000011,0001011,0001101,0011101,0010111,1111111]

587

By proposition 2.1 this code can detect six errors. It can correct three errors. It is therefore suitable

for error control.

Table 2.1.6: Generator Polynomials of F,'[x]mod (xg - 1)

Generator Polynomial Corresponding Codeword
0 000000000

1 000000001

x+1 000000011

x4+ x+1 000000111

X' +x+1 001001001

¥ +1 000001001

X +xHxt T+ x+1 011011011

X+ x N+  FxHx+1 111111111

The codes in C are ideals of the polynomial ring Fz9 [x] mod (x9 —l) m=8, n=9, W, =09,

d =9, (n,md)=(9,89), C=[00000000,000000001,000000011,000000111,001001001,000001001,

011011011,111111111]

By proposition 2.1 this code can detect eight errors. It can correct four errors. It is suitable for error

control.
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Table 2.1.7. Generator Polynomials of F,'[x]mod (x” - l)

Generator Polynomial Corresponding Codeword
0 00000000000

1 00000000001

x+1 00000000011

B I N I T A T B N R Ry | IRRRRRRNNNYI

The codes in C are ideals of the polynomial ring an[x]mod(xu —1) m=4, n=11, W =11,

d . =11, (n,m,d)=(114,11), C=[00000000000,00000000001,00000000011,11111111111]

By proposition 2.1 this code can detect ten errors. It can correct five errors. It is suitable for error

control.

Table 2.1.8. Generator Polynomials of FQ”[x]mod (x13 - 1)

Generator Polynomial Corresponding Codeword
0 0000000000000

1 0000000000001

x+1 0000000000011

B P i+ 1111111111111

The codes in C are ideals of the polynomial ring F° [x]moa’(x13 —1) m=4, n=12, W, =13,

d, =13, (n,m,d)=(13,4,13), C=[0000000000000,0000000000001,0000000000011,1111111111111]

By proposition 2.1 this code can detect twelve errors. It can correct six errors. It is suitable for error

control.

Table 2.1.9. Generator Polynomials of les[x]mod (x15 — 1)

Generator Polynomial Corresponding Codeword

0 000000000000000
1 000000000000001
x+1 000000000000011
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x2+x"+1 000000000000111
x4 x+l 000000000001011
xt+x+1 000000000011001
x4+t +x+1 000000000011111
x +1 000000000001001
x+xt x4l 000000000110011
X 4x +x+l 000000000101011
x +1 000000000100001
A +xt 17 +1 000000001111001
x4 x4+l 000000010001011
x4+ +x+1 000000001001111
¥4+ x7 40 4x° +1 001001001001001
A+ xt x4l 000000011010001
At 171 000000001011101
x' +1 000000011100111
¥ +x’+1 000000000000101
X+ +x+1 000001100001111
R T A N R R | 000010100110111
At xxt X+ 000110101011001
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X+ xt+x+x+1 000000100010111

XA+t +1 000001100111001

D A P A
1111111111111

+x+ 0+ xr X+ x+1

The codes in C are ideals of the polynomial ring F,*[x]mod (x15 —1) m=25 n=15 W =15,

d =15, (n,m,d)=(15,25,15),

C =[000000000000000,000000000000001,000000000000011,000000000000111,
000000000010011,000000000011001,000000000011111,000000000001001,000000000110011,
000000000101011,000000000100001,000000001111001,000000010001011,000000001001111,
000000011010001,001000110100011,000000001011101,000000011100111,000000100000101,
000001100001111,000010100110111,000110101011001,000000100010111,
000001100111001].

By proposition 2.1 this code can detect five errors. It can correct two errors. It is suitable for error

control.

Table 2.1.10. Generator Polynomials of F'217[x]m0d (x17 - 1)

Generator Polynomial Corresponding Codeword
0 00000000000000000
1 00000000000000001
x+1 00000000000000011
Arx+x+xt+xr+x+1 00000000111010111
9 7 5 4 3
x +x' +x+x +x +1 00000001010111001
P+ +xt+ 7 +1 00000000100111001
X+l +x+ P +x+1 00000001101001011
X+ xR XX
11111111111111111

x4+ x x4+
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The codes in C are ideals of the polynomial ring £’ [x]mod(x” _1) m=8, n=17, W, =17,

d =17, (n,m,d)=(17,8,17),

C =[00000000000000000,00000000000000001,00000000000000011,
00000000111010111,00000001010111001,00000000100111001,
00000001101001011,11111111111111111]

By proposition 2.1 this code can detect sixteen errors. It can correct eight errors. It is suitable for

error control.

Table 2.1.11. Generator Polynomials of F,’[x]mod ()c19 - 1)

Generator Polynomial Corresponding Codeword
0 0000000000000000000

1 0000000000000000001
x+1 0000000000000000011
ey x4 x+1 1111111111111111111

The codes in C are ideals of the polynomial ring F,°[x] moal(x‘9 —1) m=4, n=19, W =17,

d, =19, (n,m,d)=(9,4,19),

C =[0000000000000000000,0000000000000000001,0000000000000000011,
IT11111111111111111]

By proposition 2.1 this code can detect eighteen errors. It can correct nine errors. It is suitable for

error control.

Table 2.1.12. Generator Polynomials of Ffl[x]mod (le - 1)

Generator Polynomial Corresponding Codeword
0 000000000000000000000
1 000000000000000000001
x+1 000000000000000000011
X2 +x+1 000000000000000000111
X +x2+1 000000000000000001101
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X +x+1

000000000000000001011

X +xt+ 7 +1

000000000000000111011

Xrxt+xt+x+1

000000000000001010111

X +1

000000000000000001001

XAt +x+l

000000000000000010111

X+t +1

000000000000000011111

X +xt 0+ +1

000000000000010011111

X +x+xX +xt+ X7 +1

000000000000011111001

X +x+1

000000000000000100011

x +xt+1

000000000000000110001

XHxl+x +x+1

000000000000101001011

Xax+x +xr+1

000000000000110100101

X+ +x+1

000000000000001100101

X rxt+x+l

000000000000001010011

XA+ x+x +xT+1

000000000001111011101

Xax +x+ 0+ X+ +x+1

000000000001011111111

X+t +x+1

000000000000001111111

X +x+1

000000000001000001001

X +x+1

000000000001000001001
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x +1

000000000000010000001

X+ +xt+ X x+l

000000000011000011011

X+ xT+xHxt X7+

000000000100011010101

XHx"+x+1

000000000000110000011

Xt +x P+ x+1

000000000001100110111

x’+1

000000000001000000001

X+t +x+1

000000000010101011001

X+ + X+ X+l

000000001101101101011

D I N A N TRy |

000000111001101111101

X +x a1

000000100001100010001

X x0T !

+x°+x" +x+1

000001100110110011111

D N A R R T R

+x° 4+ X7 +x7 +1

000001111011011100101

1 14 1 12 1
X xR X+ X 428

+x° +x" +x7 +1

000001111011100110101

X+ +xC+x0 +1

001001001001001001001

X0+ T X X X+

kX x+1

[rrrrrriiia11111111

d =21,(n,m,d)=(21,39,21),

The codes in C are ideals of the polynomial ring ' [x]mod(x21 —1) m=36, n=21, W =21,
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C =[000000000000000000000,000000000000000000001,00000000000000000001 1,
000000000000000000111,000000000000000001101,000000000000000001011,
000000000000000111011,000000000000001010111,000000000000000001001,
000000000000000010111,000000000000000001111,00000000000000111001,
000000000000010011111,000000000000011111001,000000000000000100011,
000000000000000110001,000000000000101001011,000000000000110100101,
000000000000001100101,000000000000001010011,000000000001111011101,
000000000001011111111,000000000000001111111,000000000001000001001,
000000001110110110011,000000000000010000001,000000000011000011011,
000000000010011010101,000000000000110000011,000000000001100110111,
000000000001000000001,000000000010101011001,000000001101101101011,
000000011100110111101,000001100110110011111,000001111011011100101,
[BERERRRRERRRRENRRNEN]

By proposition 2.1 this code can detect twenty errors. It can correct ten errors. It is suitable for error

control.

Table 2.1.13. Generator Polynomials of F,”’[x]mod (x23 - 1)

Generator Polynomial Corresponding Codeword

0 00000000000000000000000

1 00000000000000000000001

x+1 00000000000000000000011

X T xS x4+l 00000000000010101110011
11 10 6 5 4 2

X +x +x +x +x +x +1 00000000000110001110101

e e e+t 41 00000000001111100100101
12 10 7 4 3 2

X +x +x +x"+x+x +x+1 00000000001010010011111

X+ x+1 11111111111111111111111

The codes in C are ideals of the polynomial ring F* [x]mOd(x23 —1) m=8, n=23, W, =23,

d_=23,(n,m,d) =(23,8,23),
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C =[00000000000000000000000,00000000000000000000001,00000000000010101110011,

00000000000110001110101,00000000001111100100101,00000001010010010011111,

IT111111111111111111111]

By proposition 2.1 this code can detect twenty two errors. It can correct eleven errors. It is suitable

for error control.

Table 2.1.14. Generator Polynomials of

FEP[x]mod (x25 - 1)

Generator Polynomial

Corresponding Codeword

0 0000000000000000000000000
1 0000000000000000000000001
x+1 0000000000000000000000011

X+ x+l

0000000000000000000011111

X+ x4+ x0 +1

0000100001000010000100001

DA N AR L TR N TR LRI |

0000000000001111100100101

XX e X ]

0000110001100011000110001

P x4 x+1

IT1111111111111111111111

The codes in C are ideals of the polynomial ring £ [x]mod(xzs—l) m=

W,.,d, =25,(n,m,d)=(25,8,25),

C =[0000000000000000000000000,0000000000000000000000001,

00000000000000000000011,0000000000000000000011111,

0000100001000010000100001,0000000000001111100100101,
000011000110001100011000L,1111111111111111111111111]

8,

By proposition 2.1 this code can detect tenty four errors. It can correct twelve errors. It is suitable for

error control.
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Table 2.1.15. Generator Polynomials of F,''[x]mod (x27 - 1)

Generator Polynomial

Corresponding Codeword

0

000000000000000000000000000

1

000000000000000000000000001

x+1 00000000000000000000000001 1
¥ +x+1 000000000000000000000001011
¥+ +1 000000000000000000001001001
¥+ x" +1 000000001000000001000000001
x +1 000000000000000000000001001

X Hxt+xt+x+x+1

000000000000000000011011011

1 1 1 2
Xt +x

000000011000000010000000110

X+ +x+l

000000000000000000111111111

X’ +1

000000000000000001000000001

D R R I i Ay |

000000111000000111000000111

T xBxX7++x +1

000001001000001001000001001

P xP . +x+1

IR RERRRRRRRRRRRRananaeeny!

d =27, (n,m,d)=(27,14,27),

The codes in C are ideals of the polynomial ring £’ [x]mod (x27 _1) m=14, n=27, W, =27,
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C =[000000000000000000000000000,000000000000000000000000001,
000000000000000000000000011,000000000000000000000001011,
000000000000000000001001001,000000001000000001000000001,
000000000000000000000001001,000000000000000000011011011,
000000011000000010000000110,000000000000000000111111111,
000000000000000001000000001,000000111000000111000000111,
000001001000001001000001001 1111111111 T1111T12111111111]

By proposition 2.1 this code can detect tenty six errors. It can correct thirteen errors. It is suitable for

error control.

Table 2.1.16. Generator Polynomials of F,”’[x]mod (x29 - 1)

Generator Polynomial Corresponding Codeword

0 00000000000000000000000000000
1 00000000000000000000000000001
x+1 00000000000000000000000000011
e x4 +x+1 1111111111111 1111111111111111

The codes in C are ideals of the polynomial ring £’ [x]mod (x29 —1) m=4, n=29, W, =29,

d, =29, (n,m,d)=(29,4,29),

C =[00000000000000000000000000000,00000000000000000000000000001,
0000000000000000000000000001 1, 1111111 1TTTTT1111111111111111]
By proposition 2.1 this code can detect twenty eight errors. It can correct fourteen errors. It is suitable

for error control.

Table 2.1.17. Generator Polynomials of F; '[x]mod (x31 - 1)

Generator Polynomial Corresponding Codeword

0 0000000000000000000000000000000
1 0000000000000000000000000000001
x+1 0000000000000000000000000000011
X+ x> +1 0000000000000000000000000100101
X +xd+1 0000000000000000000000000101001
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XX+ +x+1

0000000000000000000000000101111

XHxt+xt+x+1

0000000000000000000000000110111

XHxt+x +x+1

0000000000000000000000000111011

XHxt+ X +xt+x+1

0000000000000000000000000111111

X+ +x +x+1

0000000000000000000000001101111

XHxt+ X +xt+x+1

0000000000000000000000000111111

X+ +x +x+1

0000000000000000000000001101111

X+t +x+1

0000000000000000000000000111111

X+ +xt+1

0000000000000000000000001110001

x+xt X +1

0000000000000000000000001011001

x¢+1

0000000000000000000000001000001

XX+ + X+ xr+1

0000000000000000000010110101101

XA+ 0+ P x+]

0000000000000000000111010110111

X+t x+l

0000000000000000000010101110011

A+ xR+

0000000000000000000001111100101

X+ X+ +x+1

0000000000000000000011000001011

M +x 7+ +1

0000000000000000000101000011101

X+ T+t P x+1

0000000000000000000011110110111

x4+l

0000000000000000000100011011001
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X+ ¥+ +x+1

0000000000000000000011100100011

a2 1

0000000000000000000100101100101

X+ +x a1

0000000000000000000010010110111

A T+ X

0000000000000000000110111011001

X+ X+ X+ x+1

0000000000000000000011101101111

D G R R gy |

0000000000000000000010110110001

X+ x+x +x+1

0000000000000000010011010000011

X+ T+ +1

0000000000000000000101110000101

X+ X+ X+ +x+1

0000000000000010101011000100111

X+ +x 0+ +1

0000000000000000000101001101001

Xx"+x +x+1

0000000000000001000000010001011

X+ x Xt +1

0000000000000110000000111011101

1 14 1 12 1
P xR X+ X

+x*+x0 +xt+1

0000000000001111011011100110011

X x?+x ¥ x Ext ? +1

0000000000000010001100101010101

X0+ X+t x+

0000000000000000000001111011101

XX+t x+1

0000000000000000001000001100111

X+ xR+ 0 +1

0000000000000001110001100001001

X+t +x+1

0000000000000010010000100011011

X+ X+ X +x0+1

0000000000000000110000010010101
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1 14 1
X x4

+x + X+t x+1

0000000000000010100011110111111

O+ xt+1

0000000000000000000010001110001

X+ x x4+l

0000000000000000000110010010011

X x+x +x +xy

+x*+x7 +1

0000000000000001001101110010101

xlé +x15 +x13 +x11+x10

+x +x0+x +x +x+1

0000000000000011010110010111111

B a7 26

+x+x° +1

0000000000000001010100111011001

xl() +x15 +x14 +x13 +x12

X+ X+ Hx+1

0000000000000011111101001101011

a0+ x +x*

+xX+xt+x+1

0000000000000001011000011111111

X+ xP +x x4l

0000000000000011101000100000001

X+ X"+ X +1

0000000000000000000010110101001

X X X+t

+x° +x+1

0000000000000000000111011111011

DA I AR L R R R |

0000000000000001010011000101101

1 1 14 1 11
X P X

+x*+ X +xt x4l

0000000000000011110101001110111

X x0T 0+

0000000000000001001110111000001

X+ + X x+1

0000000000000001101001100100011

X+ x +x +x+1

0000000000000001000000000110111
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x20+x19+xl7+x16+x15+x12
0000110010001111010000110001011
+x"M+ X+ x+1

x20+x19+xl7+x16+x15+x12
0000000000110111000101001100001
+x X"+ x0 27 +1

x25 +x23 +x21 +x20 +x19 +x17 +x15 +x13
0000010101110101011011110011011
x4 e  x

x26 +x25 +x22 +x19 +x18 +x17
0000110010001111010000110001011
+x xS xR+ x4+l

x30+x24+x22+x21 +x20+x14+x12 +x11
S B LS RS S T 0000001011100000101111111111111

+x + 0 +xT+1

x30+x29+x28+x27+x26+x25+x24+x23
VE L O L I B e 1111111111111100000000111100101

+x° +x2 +1

x30+x29+x28+x27+x26+x25+x24+x23
x4 x0T "+
1T 111111
AT R N e O e A A b

+x+x+x 0+ +x

The codes in C are ideals of the polynomial ring F;’'[x] mocl(x3‘ —1) m=71, n=31, W, =3,

d =31, (n,m,d)=(3171,31),
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C =[0000000000000000000000000000000,0000000000000000000000000000001,

000000000000000000000000000001 1,0000000000000000000000000100101,
0000000000000000000000000101001,0000000000000000000000000101111,
0000000000000000000000000110111,0000000000000000000000000111011,
0000000000000000000000000111111,0000000000000000000000001101111,
0000000000000000000000000111111,0000000000000000000000001110001,
0000000000000000000000001011001,0000000000000000000000001000001,
0000000000000000000010110101101,0000000000000000000111010110111,
0000000000000000000010101110011,0000000000000000000001111100101,
0000000000000000000011000001011,0000000000000000000101000011101,
0000000000000000000011110110111,0000000000000000000100011011001,
0000000000000000000011100100011,0000000000000000000100101100101,
0000000000000000000010010110111,0000000000000000000110111011001,
0000000000000000000011101101111,0000000000000000000010110110001,
0000000000000000010011010000011,0000000000000000000101110000101,
0000000000000010101011000100111,0000000000000000000101001101001,
0000000000000001000000010001011,0000000000000110000000111011101,
0000000000001111011011100110011,0000000000000010001100101010101,
0000000000000000000001111011101,0000000000000000001000001100111,
0000000000000001110001100001001,0000000000000010010000100011011,
0000000000000000110000010010101,0000000000000010100011110111111,
0000000000000000000010001110001,0000000000000000000110010010011,
0000000000000001001101110010101,0000000000000011010110010111111,
0000000000000001010100111011001,0000000000000011111101001101011,
0000000000000001011000011111111,0000000000000011101000100000001,
0000000000000000000010110101001,0000000000000000000111011111011,
0000000000000001010011000101101,0000000000000011110101001110111,
0000000000000001001110111000001,0000000000000001101001100100011,
0000000000000001000000000110111,0000110010001111010000110001011,
0000000000110111000101001100001,0000110010001111010000110001011,
0000110010001111010000110001011,0000001011100000101111111111111,
1111111111111100000000111100101]

By proposition 2.1 this code can detect nineteen errors. It can correct nine errors. It is suitable for
error control.
GAP Software has also been used to confirm that all our repetition codes of odd length are perfect

codes. Thus we have generated perfect codes for odd n for 1<n <31 from the polynomial ring

E’ [x] mod (x" - 1) .
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The best perfect code obtained was generated by F,'[x]|mod ( X! —1). The worst perfect code was

generated when n=1.

Theorem 2.3

Let / be a maximal ideal over the polynomial ring F,'[x]mod (x” —1). The following statements

are equivalent:

(i) I 1is noetherian

(ii) Every chain of subsets (/) = (/,) = (I,) ... ({,) stabilizes at some 1,

(ii1) Every nonempty collection of subsets of / has a maximal ideal

Proof

(i) = (ii). Let / be noetherian. Then we have the chain (/)<= (/,)c(/,)<...c({,). We can
write ['= Ul . <1 which is finitely generated since [ is noetherian. Let the generator elements be
I,1,,....,I . Each of these elements is contained in the union of 7, . Therefore /' hence I, =1

(il)= (i). Assume the ascending chain condition exists. Let /' I, be any subset of [ . Define a
chain of subsets UpcU)cU)c...c) as follows; I,={0} . Let
1., =1 +x(F) [x]mod(x" —1)) for some xe(/'—1,) if such an x exists. Suppose such an x

does not exist take [, ., =1 . Clearly I, ={0},/, is generated by some nonzero element of /', I, is

I, with some element of /' notin [, until the chain stabilizes. By construction we have an ascending
chain which stabilizes at some finite point by ascending chain condition. Hence I’ is generated by n
elements since ['=1.

(i) = (iii). If noetherian then it has a maximal ideal.To see this let P be a set of all the proper
ideals in the polynomial ring F)' [x]mod(x" —1) containing /, where [, is any proper ideal in
thisring. Already we know that P#J since [, € P. Since F)' [x]mod(x" —1) is noetherian the

maximum condition gives a maximal element [/ € P. We should show that /is a maximal ideal in
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F'[xghtlmod (x" —1). Suppose there is a proper ideal J with / <J. Then [/, = J and hence
JeP . Therefore maximality of [ gives [I=J and so [ is a maximal ideal in
FE) [x]mod(x" —1).

(i) = (iii). If (iii) is false there is a nonempty subset S of F'[x]mod(x"~1) with no

maximal element and inductively we can construct a non -terminating strictly increasing chain in § . (iii)

= (ii). The set x, .m >1 has a maximal element whichis /.

(m)
Proposition 2.4

E; [x] mod (x” - 1) is a Unique Factorization Domain
Proof

Let teF) [x] mod (x" — 1). Then ¢ is irreducible if and only if ¢ is prime. We have to show the

following two claims:
(1) if ¢ is prime then ¢ is irreducible

(i) if ¢ isirreducible then ¢ is prime
For claim (i) suppose that ¢ is prime and ¢ =uv,Vt,u,v,€ F}’ [x]mod (x” —1). We should prove
that either u or v is a unit. Using the definition of prime, ¢ divides either u# or v. Suppose ¢

divides uthen we have u=tw=>u=uvw=u(l-w)=0=>w=1, Vt,u,v,we F,) [x]mod(x” —1) )
Since F)' [x] mod (x” - 1) is an integral domain v 1is a unit. This same argument holds if we assume ¢
divides v, thus ¢ is irreducible. For claim (ii) let ¢ be irreducible and ¢ |uv. Then uv =tw for some
weF, [x] mod (x" - 1) . BY some property of unique factorization domain, we decompose ¢,u,v into
products of irreducible elements, say (#,u,v,) upto the units (a,b,c) . Hence
a-t..t =b-u..u =c-v..v, . This factorization is unique and therefore ¢ must be associated to some

u, or v, implyingthat ¢ divides u or v.
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