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Abstract

This paper is committed to the study of absolute continuity of non negative functions with respect to vector
measures. Almost everywhere properties are applied to establish boundedness, measurability and convergence
of sequences of measurable functions. The measurability of sets with respect to vector duality functions with
values in a Hilbert space is considered.
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1 Introduction

Many studies have been done on absolute continuity with respect to locally convex topological vector spaces
under the conditions of finiteness and variation of vector measures. Other scholars applied measures of bounded
variation with values in Normed linear spaces. In this paper, we consider absolute continuity of non negative
functions. Properties of vector duality set functions with values in the product Banach spaces of absolutely
summable functions (βεi : i ∈ I) in X defined on the indexed set I are applied. Throuhout this paper,
(X × Y,Z) denotes a bilinear system where X × Y is the product of Banach spaces X and Y and Z is a
Hilbert space, (S, ρ) and (T, ε) denote measurable spaces with ρ and ε being the sigma rings of subsets of S
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and T respectively and µ : ρ → βεi and ν : ε → Y denote vector measures where µ(E) =
∑
i∈I | εi | (E) ∈ βεi

and ν(F ) ∈ Y for sets E ∈ ρ and F ∈ ε, L′(µ) and L′(ν) denotes first integral with respect to µ and ν repectively.

If ψ is a Z-valued bilinear function defined on X × Y such that ψ : X × Y → Z, then

< (µ(E)× ν(F ))ψ, z
∗ > = < (

∑
i∈I | εi | (E)× ν(F ))ψ, z

∗ >

for each i ∈ I where z∗ is an element in Z∗ the dual space of the Hilbert space Z is called vector duality function.

2 Basic Concepts

Definition 1 (Absolute continuity):

Let µ : ρ→ βεi and ν : ε→ Y be vector measures. If α and β are non-negative set functions defined on ρ and ε
respecively, then α×β is absolutely continuous with respect to µ× ν if for each λ > 0 there corresponds a δ > 0
such that µ×ν(E×F ) < δ implies that α×β(E×F ) < λ for every E×F ∈ ρ×ε. We therefore write α×β < µ×ν

Definition 2 (Almost uniformly convergence)

A sequence (fn) of X × Y valued functions is said to (µ × ν) - converge to f almost uniformly if given λ > 0,
there exists

E × F = (E × F )(ε) ∈ ρ× ε such that µ× ν(E × F ) < λ and

| fn(s, t)− f(s, t) |→ 0 uniformly on S × T \ E × F

Definition 3 (Measurable function)

A function f : S × T → X × Y is said to be (µ× ν,X × Y ) - measurable

if and only if

i) Range(f) ⊂ X × Y

ii) There exists a sequence (fn) of X × Y valued functions converging (µ× ν,X × Y ) - a.e. to f

3 Results

The following propositions provide insights into properties of absolute continuity of non-negative functions.

Proposition 1

Let (S, ρ) and (T, ε) be measurable spaces, (X×Y,Z) a bilinear system and µ : ρ→ βεi and ν : ε→ Y be vector
measures.If α and β are non-negative measures defined on ρ and ε respectively such that

α× β << µ× ν, then α << µ and β << ν
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Proof: Let G = E×F ∈ ρ× ε, λ > 0 and δ > 0 such that µ(E) < δ imply that α(E) < λ for any set E ∈ ρ and
ν(F ) < δ imply that β(F ) < λ for any set F ∈ ε. Since α× β << µ× ν, on application of properties of product
measures [1] , we obtain

< (µ× ν)(G), z∗ > = < (µ× ν)(E × F ), z∗ >< δ2 implies that

< (α× β)(G), z∗ > = < (α× β)(E × F ), z∗ >< λ2

Consider the function f : S× T → X × Y .For a fixed s ∈ S, then f(s) ∈ L′(ν). Let 5t = (s ∈ S : νf(s)[G
s] < δ)

be the t - section of the set 5 [2] . It follows that,

δ2 ≥< (µ× νf(s))(G), z∗ > = < µ(Gt)× νf(s)(Gs), z∗ >.

Since νf(s)(G
s) > δ on the complement of 5t in Gt, it follows that

δ2 ≥< (µ(Gt)× νf(s)(Gs)), z∗ >> δµ((5t))c

where (5t))c denotes the complement of 5t

Therefore, µ((5t))c < δ implies α((5t))c < λ i.e. α << µ

Similarly for a fixed t ∈ T , we have

f(t) ∈ L′(α). Let 5s = (t ∈ T : αf(t)[G
t] < λ). Therefore,

λ2 ≥< (αf(t) × β)(G), z∗ > = < αf(t)(G
t)× β(Gs), z∗ > .

Hence, λ2 ≥< αf(t)(G
t)× β(Gs), z∗ >> λβ((5s))c

where (5s))c denotes the complement of 5s

Therefore, β((5s))c < λ when ν((5s))c < δ i.e. β << ν

Proposition 2: Let (X × Y,Z) a bilinear system, where X and Y are Banach spaces and Z is a Hilbert space.
Let β : ε→ Y be a vector measure such that such that α×β exists for every α : ρ→ βεi . If α×β << µ×ν and
(β(F ))εi(E) = LUBn

∑
i∈I

∑n
k=1 | εi | (E)β(Fk) where (Fk) is the partition of F , then (β(F ))εi(E) << µ× ν

Proof: Let α be a measure defined on a set (βεi : i ∈ I) of absolutely summable functions (εi : i ∈ I) in X
defined on an indexed set I. Since α× β is absolutely continuous with respect to µ× ν, given λ > 0 there exists

δ = δ(ε) > 0 such that < µ× µ(G), z∗ >< δ implies < α× β(G), z∗ >< λ

for every G ∈ ρ× ε. Let E ∈ ρ and F ∈ ε such that for k > 0 we have

µ(E) < k and µ(F ) < δk−1

Let (B(F ))εi(E) = LUBn
∑
i∈I

∑n
k=1 | εi | (E)β(Fk) ∈ Z where (Fk) is the partition of F for 1 ≤ k ≤ n (Otanga

et al., 2015a). Define

α(E) =
∑
i∈I | εi | (E) for any measurable set E [3]. If G = E × F ∈ ρ× ε,
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then G =
⋃n
k=1E × Fk. Therefore

< (µ× ν)(G), z∗ > =
∑n
k=1 < µ(E)ν(Fk), z∗ >≤

∑n
k=1 k < ν(Fk), z∗ >

= k < ν(
⋃n
k=1 Fk), z∗ > = k < ν(F ), z∗ >< δ

Since < (α× β)(G), z∗ >< λ, it follows that

< (α× β)(G), z∗ > =
∑n
k=1 < α(E)β(Fk), z∗ >

= <
∑
i∈I

∑n
k=1 | εi | (E)β(Fk), z∗ >

Taking the least upper bound of right hand side of the equation

[4] , we obtain

< (B(F ))εi(E), z
∗ >< λ . Hence (B(F ))εi(E) << µ× ν

Proposition 3: Let (Xεi × Y, z) be a bilinear system and α be a measure defined on a set (βεi : i ∈ I) of
absolutely summable functions (εi : i ∈ I) in X defined on an indexed set I. Let µ : ρ → βεi and ν : ε → Y be
vector measures. If for each i ∈ I, αi and βi are non-negative set functions defined on ρ and ε respectively such
that αi << µ and βi << ν, then

∑
i∈I αi × βi << µ× ν.

Proof: For each E ∈ ρ and F ∈ ε, let µ(E) =
∑
i∈I | εi | (E) ∈ Xεi and ν(F ) ∈ Y such that µ(E)ν(F ) =∑

i∈I | εi | (E)ν(F ). For each i ∈ I, let αi × βi <<| εi | ×ν where α× βi is a non-negative set function on ρ× ε.

For each measurale set E × F and each λ > 0 there exists δ > 0 such that [5]

<| εi | ×ν(E × F ), z∗ >< δ implies < (αi × βi)(E × F ), z∗ >< λ. Let

σ ⊂ I be an arbitrary finite subset such that∑
i∈σ < (αi × βi)(E × F ), z∗ > =

∑
i∈I <| εi | ×ν(E × F ), z∗ >.

If
∑
i∈I αi × βi is a set function defined on ρ× ε by the formula∑

i∈I < (αi × βi)(E × F ), z∗ > = sup(
∑
i∈σ < (αi × βi)(E × F ), z∗ >

then for each λ > 0 there exists δ > 0 such that∑
i∈I <| εi | ×ν(E × F ), z∗ >< δ implies that∑
i∈I < (αi × βi)(E × F ), z∗ >< λ

Hence
∑
i∈I αi × βi << µ× ν

Proposition 4: Let (fn)∞n=1 be a sequence of functions such that fn : S×T → X×Y for each n. Let α : ρ→ X
and β : ε → Y be a vector measures such that such α × β << µ × ν where ν is a non-negative set function
defined on ε.
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If fn → f (µ× ν,X × Y )-almost uniformly, then fn → f almost everywhere. If fn is (µ× ν,X × Y )-integrable,
then f is integrable and

<
∫
µ|fn(t)−f(t)|((G

′)t)δν(t), z∗ >< λ for all n ≥ ℵ, λ > 0, t ∈ T and

(G′)t ∈ ρ.

Proof: Since fn → f (µ × ν,X × Y )-almost uniformly, let Gm be a measurable set with respect to ρ × ε such
that (α×β)(Gm) < λ\2m for each positive integer m and λ > 0. Let fn(s, t)→ f(s, t) uniformly on S×T \Gm.
It follows that G =

⋂∞
m=1Gm is a α × β-null set and fn(s, t) → f(s, t) foreach (s, t) ∈ S × T \ Gm. Therefore

fn → f a.e. Since f is a limit of an fn is (µ× ν,X ×Y )-integrable function, then it is (µ× ν,X ×Y )-integrable.

Since α× β << µ× ν (by hypothesis), given λ > 0 there corresponds a δ > 0 such that (µ× ν)(G′) < δ implies
(α × β)(G′) < λ \ 2m for every G′ ∈ ρ × ε amd m > 0. Since fn → f (µ × ν,X × Y )-almost uniformly, there
exists G′′ ⊂ G′ such that for a fixed t ∈ T , we have

α((G′′)t) =
∑
i∈I | εi | ((G

′′)t) < λ \ 2m

For all n > ℵ and as a consequence of integral representation of product vector measure duality [6] , we have

<
∫
| fn(t)− f(t) | δµ, z∗ >< λ \ 2

∑
i∈I | εi | ((G

′)t \ (G′′)t)

It follows from measurable concepts in [7] that

<
∫
µ|fn(t)−f(t)|((G

′)t)δν(t), z∗ >

≤ λ(
∑
i∈I | εi | ((G

′)t \ (G′′)t) \ 2
∑
i∈I | εi | ((G

′)t \ (G′′)t) < λ \ 2

Since fn is (µ× ν,X × Y )-integrable function, it is bounded.

Suppose
∫
fn(t)δµ ≤ m \ 2 for any positive integer m > 0 and for a fixed t ∈ T [8]. Then fn → f implies that∫

| fn(t)− f(t) | δµ ≤ m for all n.

Let ∆ be a measurable set with respect to ρ× ε such that G′ \∆ is a α× β-null set. On application of integral
properties of vector measure

[9] and Yaogan, 2013), we obtain

<
∫
µ|fn(t)−f(t)|((G

′′)t)δν(t), z∗ > = <
∫
µ|fn(t)−f(t)|((G

′′)t
⋂

∆t)δν(t), z∗ >

+ <
∫
µ|fn(t)−f(t)|((G

′′)t \∆t)δν(t), z∗ >

Since (G′′)t \∆t is a α-null set, therefore

<
∫
µ|fn(t)−f(t)|((G

′′)t)δν(t), z∗ > ≤ <
∫
µ|fn(t)−f(t)|((G

′′)t
⋂

∆t)δν(t), z∗ >

≤ m
∑
i∈I | εi | (G

′′)t
⋂

∆t)

Since
∑
i∈I | εi | (G

′′)t
⋂

∆t) ≤
∑
i∈I | εi | (G

′′)t), it follows that
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<
∫
µ|fn(t)−f(t)|((G

′′)t)δν(t), z∗ > ≤ m
∑
i∈I | εi | (G

′′)t)

< m ∗ λ \ 2m = λ \ 2

Consequently,

<
∫
µ|fn(t)−f(t)|((G

′)t)δν(t), z∗ > ≤ <
∫
µ|fn(t)−f(t)|((G

′)t \ (G′′)t)δν(t), z∗ >

+ <
∫
µ|fn(t)−f(t)|((G

′′)t \∆t)δν(t), z∗ >

< λ \ 2 + λ \ 2 = λ

Corollary: Let (X × Y,Z) a bilinear system, where X and Y are Banach spaces and Z is a Hilbert space. Let
(S × T, ρ × ε) be a measurable space and (fGn)∞n=1 be a sequence of (µ × ν, βεi × Y ) - a.e. bounded functions
such that fGn : S × T → X × Y for each n. If fGn → fG is (µ × ν, βεi × Y ) - almost uniformly where Gn ↑ G
and G,Gn ∈ ρ× ε, then LUBn

∑
i∈I < (| εi | ×β)(Gn), z∗ > =

∑
i∈I < (| εi | ×β)(G), z∗ >

Proof: f : S × T → X × Y and fG = χG where G ∈ ρ× ε. Let fG ⊆ βi

where βi is a Banach space of absolutely summable functions (ε:i ∈ I).

∇ = (Gn ∈ ρ× ε : fGn is (µ× ν, βεi × Y ) - measurable).

Gn =
⋃n
k=1Ek × Fk where the union is disjoint and Ek × Fk ∈ ρ× ε

for each k. Then

< (α× β)(Gn), z∗ > =
∑n
k=1 < α(Ek)β(Fk), z∗ >

=
∑
i∈I

∑n
k=1 <| εi | (Ek)β(Fk), z∗ >

where | εi | (Ek) ∈ βεi for each i ∈ I and β(Fk) ∈ Y for 1 ≤ k ≤ n

If fG = χG, then fGn(s, t) is a (µ× ν, βεi × Y ) - valued function where

Gn ∈ ρ× ε for each (s, t) ∈ S × T . It follows that Gn ∈ ∇ and ρ× ε ⊆ ∇.

Therefore, fGn(s, t) is a (µ× ν, βεi × Y ) - measurable.

Let G′n = ((x, y) :| fGn(x, y)− fG(x, y) |) ≥ 1 \m for some n)

If G′′ =
⋃∞
k=1G

′
n , then

(G′′)c =
⋂∞
k=1(G′n)c =

⋂∞
k=1(((x, y) :| fGn(x, y)− fG(x, y) |≥ 1 \m)c

=
⋂∞
k=1(((x, y) :| fGn(x, y)− fG(x, y) |< 1 \m)

where (G′′)c is the complement of G′′

Therefore, (G′′n)c ⊂ (((x, y) :| fGn(x, y)− fG(x, y) |< 1 \m)
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If 1 \m < λ for λ > 0, then | fGn(x, y)− fG(x, y) |< λ for all (x, y) ∈ (G′′)c

where G′′ is a null set. Therefore, fGn → fG (µ× ν, βεi × Y ) - almost uniformly. Since fGn is (µ× ν, βεi × Y ) -
a.e. bounded, then fG is (µ× ν, βεi × Y ) bounded. It follows that fG is (µ× ν, βεi × Y ) - measurable since it is
the limit of a sequence (fGn)∞n=1 of (µ×ν, βεi ×Y ) - measurable functions. Since fG is bounded and measurable
it implies that fG is (µ× ν, βεi × Y ) - integrable.

Let fGn ≤ fGn+1 a.e. for all n ∈ ℵ and for a fixed t ∈ T . Then <
∫

(αfGn(t)
(E))δβ(t), z

∗ >≤ m for m > 0
and E ∈ ρ. By monotone properties of a vector measure [10] , there exists an integrable function fG such that
fGn ↑ fG and LUBn <

∫
(αfGn(t)

(E))δβ(t), z
∗ > = <

∫
(αfG(t)

(E))δβ(t), z
∗ >.

Since Gn ↑ G (hypothesis), it follows that

LUBn
∑
i∈I <| εi | ×β(Gn), z∗ > =

∑
i∈I <| εi | ×β(G), z∗ >

4 Conclusion

The results obtained in this paper highlights the application of almost everywhere, measurability and boundedness
properties to analyse absolute continuity of non-negative functions with values in a Hilbert space.
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