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Abstract

The aim of this paper was to solve the third order viscous wave equa-
tion: Uy = VUgy + CUgqr, which is a PDE. It occurs in many real-life
situations such as water waves, sound waves, radio waves, light waves
and seismic waves. This equation has been solved before using analyti-
cal methods but not yet been exhaustively nor conclusively done. Two
schemes, namely CD-FD and CN-FD were developed and the equation
discretised by FDM. We used each scheme respectively to obtain so-
lution algorithms. Stability of the schemes was analysed, consistency
of the numerical solutions with the original equation was tested, and
Mathematica software used to generate solutions. The numerical com-
putational results obtained for solutions of third order viscous wave
equation obtained for varying the mesh ratio showed that the schemes
were both conditionally stable and consistency noted. We found that
as the mesh ratio reduces, the solution tends towards the exact solu-
tion. The solution algorithm showed consistency with the original vis-
cous equation when tested. In addition, the equation simulates many
physical situations which include designing of bridges, acoustics, gas
dynamics, seismology, meteorology among many other natural phenom-
ena. This work contributes to mathematical knowledge in research and
innovations which apply PDEs.

Keywords: Discretisation, Finite Difference Schemes, Stability and Con-
sistency, Finite Difference Method
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1 Introduction

Finite Difference Method has been used to solve a variety of physical prob-
lems, [9, 16, 29]. The FDM is becoming increasingly more important in the
seismic industry and structural modelling due to its relative accuracy and
computational efficiency. It is the most commonly used approach in numerical
modelling, [31]. Seismic waves may be simulated by a viscous type of wave
equation which is known to be difficult to obtain the analytical solution. This
is where the numerical solution to such types of equations is needed to solve
practical problems, [20].

Hyperbolic PDEs arise in a broad spectrum of applications where wave mo-
tion is involved, examples; optics, acoustics, oil and gas dynamics and vibrating
string to name but a few. Waves have distinct properties specific to their type
but also exhibit characteristics in common with more abstract waves such as
sound waves and light waves [5, 7, 11].

We solved the equation

Ut = VlUgy + Clpyy, 1 >0,0< 2 < L,0<t <T,—00 < u < 00 (1.1)

where v = u(z,t), denotes a dependent function on two variables, which in-
clude spatial x, time t and their partial derivatives, v is the velocity coefficient,
¢ the viscosity coefficient and T is a given time constant. The initial and bound-
ary conditions are given as follows;

u(z,0) =0=g(x) =sin(z,,) : x € (0, L) (1.2)
u(2,0) =0:2 € (0,L) (1.3)

u(0,t) =0,t € (0,7) (1.4)

f(t) = sin(t) : u(0,t) = sin(t) (1.5)
u(z,t) = u(5.5,t) =0:¢t>0 (1.6)
uw(L,t) =0,t € (0,7T) (1.7)

2 Approximations of Derivatives

We used Taylor’s series expansion of u(x+ h,t) and u(x — h, t) about a selected
grid point Uy, ,, as according to, [17, 21, 26]. To start with, take the function
and its partial derivatives to be continuous. The finite difference approxima-
tions to derivatives was then obtained from the expansion of two variables x
and t. When we truncated the terms of O(h?) and above on the expansion
and re-arranged we obtained;

i[u(x + h,t) — 2u(z,t) +u(x — h,t)]; O(h?) (2.1)

h2

Q

uwx
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This equation is the Centred Difference (CD) approximation to u,, with an
error of order h? .

Uy ~ %[u(m,t—{— k) — u(z, 0)]; O(k) (2.2)

which is the Forward Difference (FD) approximation to u; with an error of
order k (first order accurate). Similarly, truncating the terms of O(h?) and
above and re-arranging yielded;

Uy ~ %[u(m, E+ k) — 2u(z, t) + ulz, t — W) O(K) (2.3)

This equation is the Centred Difference (CD) approximation to wu; with an
error of order k? . Equations (2.1), (2.2) and (2.3) respectively were re-written
and stated with numerical symbols thus;

1

h?
Similarly, we had the approximations for the Partial Derivatives with respect
to t as listed below;

[Um+1,n — 2Um,n -+ Umfl’n]; O(hQ) (24)

Ugy =

1
U = E[Um’n+1 — Um,n]; O(k’) (25)
this was referred to as the FD in time, t
1
Ut = E[Um’nJrl — 2Um,n + Um,nfl]; O(k2) (26)

Finally, this was referred to as the CD scheme of second order derivative with
respect to time, t. All these are finite difference schemes of either first or
second order accuracies in space and time, [8, 9]. Let U(z,t) = Upnthn+i)
with U, as the point of reference. The values of h and k was then varied
iteratively and in steps such as h=0,1, 2 and so on. In numerical terms, this is
written as Upt1n+1, Unnt1, Unt1n42 and may continue in the same manner.

3 Finite Difference Method

This section dealt with the discretisation of the equation (1.1) by FDM. We
developed, analysed the stability and consistency of the numerical algorithm
which may also be referred to as a numerical solution. The method forms
the basis for most of the numerical solutions without alterations to the orig-
inal equation. Numerical solution schemes to equations are used in many
forms in numerical solvers. An advantage of this method is how it can be
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applied directly to the differential form of the governing equations. The prin-
ciple here is to employ a Taylor’s series expansion for the approximation of
the derivatives concerned. Another important advantage is its simplicity. It
provides the possibility to easily obtain high-order approximations and hence
to achieve high-order accuracy of the spatial discretisation. The FDM is the
most straight forward numerical approach in seismic modelling, and it is also
becoming increasingly more important in the seismic industry and structural
modelling due to its relative accuracy and computational efficiency, [31].

On the other hand, because the method requires a structured grid, the range
of application should be clearly restricted, which is a disadvantage. However,
with this method, the governing equation has to first be transformed into a
Cartesian coordinate system or in other words from the physical to the compu-
tational space. Nowadays, this method is utilized in the research of turbulent
flows together with immersed boundary cells, in biology. Sometimes PDEs
are very difficult to solve analytically or similarly when models are needed
for computer simulations, [17]. In these cases, at this juncture, FDM is used
to solve the equations instead of analytical approach. This method is also
very good for solving eigenvalue problems which is an added advantage. Many
real life problems generally do not have analytical solutions and this is where
numerical techniques come in handy, [9, 3, 21].

4 Numerical schemes

We considered the equation uy = Vg, + 2Ugy, it is known to be a hyperbolic
PDE. Here the second partial derivative with respect to time, u;, was approxi-
mated by equation (2.6). Likewise the derivative u,, is of second order accurate
in space was approximated by equation(2.4) and u; which is first order accu-
rate in in time by equation (2.5). While the mixed third order derivative was
obtained by first replacing the partial derivatives in turns. Centred-forward-
approximation, (CD-FD), was used to discretise u,,;. To achieve this, we used
the centred- difference approximation for u,, and a forward difference approx-
imation for partial derivative in time, t, u;. We started with the viscosity term
stated as; Uz = %(um) where numerical second spatial derivative in x was
as shown in equation (2.4) and the first derivative in time ¢, in equation (2.5).
Therefore it follows that the third order term becomes;

[(Uea)mmt1 — (Uaz)mon); O(hQ) + O(k) (4.1)

| =

Ugat =

simplified, ignored higher order terms and simplified further, for the right hand
side of the equation and we got;
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1

W [Um+1,n+l + Um—l,n+1 - ((Um—i—l,n + Um—l,n) +2(Um,n - Um,n—l—l)]; O(h2) +O(k)

(4.2)
This equation has been obtained using the already truncated approximations
for u,, and uy, [7].

4.1 Centred-Forward Difference Scheme

We replaced uy in equation (1.1) by the equation (2.6), u,, by the equation
(2.4). On the other hand, to discretise the third order viscous term, w,,;, we
combined u,, and u; using the already defined derivatives as discussed below.
The FDM allows replacements term by term using numerical schemes and we
obtained an algebraic equation as stated in equation (4.3) below;

k

First, let the mesh ratio r = h—zv, and g = %02, then the original (1.1) becomes;

BUpm—-1n41 — (28 + 1)Unng1Fms1,n41
= (r—B)Upm—1.2+(28+2=27\Up s+ (r—B)Upi1.0—Umm—1; O(h*)+O(K*) (4.3)

Where m = 1,2,3,...(F — 1), E and F was number of divisions along the
x-axis. The final scheme (4.3) obtained was referred to as CD-FD numerical
scheme and known as a numerical solution to the third order wave equation

by CD-FD scheme.

4.2 Stability of Centred-Forward Difference Scheme

The stability of a finite difference solution is an important characteristic and
must be established before getting into solving any equation. This concerns
the nature of errors generated during discretisation and accumulated over the
previously approximated schemes, [23]. The actual solution to the difference
equation can be found if only we could possibly carry out all numerical op-
erations extended to an infinite number of decimal places. However, every
calculation made by the computer is carried out to finite number of significant
figures. As a result, this will bring out a round off error at each level, [2, 22,
11, 28].

CD-FD scheme was expanded iteratively by taking m=1,2,3,...(E-1) obtained
a system of equations;

—BUg—2n11+284+1)Up_1ns1—BUps1,n41 = (r=B)Up, n+(26—2r+2)Up_1 n+
(r = B)Ugn — Upt1,n—1 (4.4)

which are linear algebraic form of equation (4.3). It was re-written in matrix-
vector form and stability analysis was done using matrix-eigen value method.
It was found that the CD-FD scheme was conditionally stable.
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4.3 Crank Nicolson scheme

Next we replaced uy by its CD-FD scheme, u,, by the average of its centred
difference approximations at n'" time level and at (n + 1)"* time level. We re-
ferred to this as CN-FD scheme, which yielded equation (4.5) as shown below;
To start with, let r = fL—zv and = %02, the scheme (4.4) becomes;

—(25 -+ r)Um—l,n—&-l + (45 + 2r + 2)Um7n+1 — (2ﬁ + T)Um+17n+1
= (r = 2B8)Un1 + (4B + 4 — 20 Upps + (r — 28)Uns1n — 2Umme1 - .. (4.5)

This is for m = 1,2,3,...,(E —1), E where E is number of divisions along the
x-axis. The final scheme obtained is referred to as CN-FD numerical scheme.

4.4 Stability Analysis of Crank-Nicolson Scheme

We used the matrix method to analyse stability of the scheme (4.5). Expanding
this scheme by taking m = 1,2,3, (F — 1) and obtained the following general
result of system of equations.

(28 + 1) Ug-9n41+ (A8 +2r + 2)Up—1 041 — (28 + 1)Uk nt1
= (7” — Qﬁ)UE_Zn + (45 +4 — QT)UE_Ln -+ (7’ — QB)UE,n — 2UE+1,n—1 (46)

the systems of linear algebraic of equation (4.5) was written in matrix-vector
form as and stability Analysis was done using Matrix Method. It was found
that the CN-FD scheme was also conditionally stable.

5 Consistency of the whole Equation

Truncations carried forward accumulated errors, therefore, it was necessary to
find out the consistency of the numerical solution with the original equation.
We used a related concept of error analysis. The process of testing consistency
was done step by step using the application of Taylors expansion. The viscous
term being u,,;. This is the term which determines the order of the model
equation. The other two terms are both second order, one in space, x and
the other in time, t. We carried out expansion of equation (1.1) using Tay-
lors expansion. It was found that the CD-FD and CN-FD numerical solution
algorithms were both consistent with the original equation, [12].

6 Results

From the initial and boundary conditions, u;(x,0) = 0, the forward difference
analogue of u; yields;
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Ut & 3 [Unns1 — U] = 0, that is +[Up1 — Unyp) =0

implying that Uy, 1 = Upo.

Similarly, from the initial condition, u(z,0) = 0, u(x,0) = U, = sin(z,,).
Therefore U, o = 0 and U,,; =0

7 Graphical Presentations

7.1 Case one

We use CD-FD scheme and Mathematica software, to find the solution of the
third order viscous wave equation at two levels, namely n = 1, 2 to start with.
An appropriate temporal mesh size considered for the calculation is taken for
different values of h, k, r, 8 and t,we got the results as follows for the given

values thus; h = %, k= %, = 2,r = 1, the schemes become;
CD-FD :

—2Unm— 1041+ 5Um 1 —2Unms1041 = —Upme1n +4Unmn—Unt1.0— U1 (7.1)
CN-FD :

_5Um71,n+1 + 12I’Jm,n+l - 5Um+1,n+1 = _BUmfl,n + 10Um,n - 3Um+1,n - 2Um,n71
(7.2)

The solutions at ¢ = 0 andt = 1 are already known and are referred to as the
zero and the first time level solutions respectively for 0 < x < 5. Using the
initial and boundary conditions stated as equation (1.1) earlier,

u(0,t) = f(t),u(5,t) =0 :t >0, let f(t) = sin(t) implying that u(0,t) =
sin(t). Also let u(oo,t) = u(5.5,t) =0:t >0, u(z,0) =0, u(z,0) = 0.

Here, the subscript m - designates the grid point along the x - direction, and
n along the t - direction as described earlier. Therefore n is varied as m =1,
2, 3....10; with m and n fixed as n=0 and m = 1,2 3, ...10 in Equation (3.7)
repeatedly. The systems of linear algebraic equations obtained are by fixing
n (from n = 1) and vary m and the mesh ratio, tabulate values and present
graphically for both case one and two.

7.1.1 Forward Difference Scheme

We use Mathematica to output the results graphically

In[11]:ListPlot3D

[0,0.4794255386,0.8414709848,0.9974949866,0.9092974268,
0,0.300879,0.589256,0.719299,0.643848,0,0.150439,0.369843,0.544545,0.594099
0,0.0752186,0.222522,0.383488,0.488624,0,0.0376076,0.130048,0.256684,0.372362,



60 Esther Chepngetich Rop, Okoya Michael Oduor and Owino Maurice Oduor

0,0.0188004,0.074393,0.165388,0.268373,0,0.00939329,0.0418337,0.103342,0.185006,
0,0.00468287,0.0231464,0.0627647,0.12245,0,0.00231389,0.0125201,0.0367957,0.0772317,
0,0.00110185,0.00641843,0.0201236,0.0447421,0,0.000440741,0.00269959,0.00883728,
0.020402,0,0,0,0,0,

PlotLabel — 7 Graphical Presentation with FDS ” AxesLabel— "t values”,”xvalues” " u(x,t)
values” ,Shading — True]

Out[1] : - Surface Graphics -

Grapghical Presentation — with FDS

Figure 1: Graphical Presentation Using FDS with § = 2 and r=1

7.1.2 Crank Nicolson Scheme

We use mathematica to output the results graphically as shown below.

In[11]:ListPlot3D [0,0.4794255386,0.8414709848,0.9974949866,0.9092974268,
0,0.297218,0.568157,0.679295,0.590844,0,0.159508,0.372232,0.525419,0.549056,
0,0.0856011,0.235876,0.383471,0.462605,0,0.0459346,0.145934,0.268298,0.364835,
0,0.0246419,0.0886415,0.181662,0.273855,0,0.013206,0.0530065,0.119628,0.197307,
0,0.00705256,0.0311787,0.0766073,0.136589,0,0.0037201,0.017873,0.0472206,0.089872,
0,0.00187568,0.009633

PlotLabel— ” Graphical Presentation with CNS 7, AxesLabel—"t values”,”xvalues”,” u(x,t)
values” ,Shading — True]

Out [2]: -Surface Graphics-
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0.75 &
ulxt) wmhes

Figure 2: Graphical Presentation Using CNS with § = 2 and r=1

8 Graphical Presentations

8.1 Case Two
For h =1/5,k =1/5, = 5,r = 1, the schemes become;

CD-FD:

_5Um—1,n+1 + 11Um,n+1 - 5Um+1,n+1 =4 Um—l,n + 10Um,n - 4Um+1,n - Um,n—l
(8.1)
CN-FD:

—1 1U’m—l,n—i-l +24Um,n+1 - 11Uvm—l—l,n—i—l = _9Um—1,n+22Um,n_9Um+1,n_2Um,n—1
(8.2)

The solutions at t = 0, t = 1 are already known For 0 < z < 5. From the
initial and boundary conditions, u(0,t) = f(t),u(oc0,t),t) =0:¢t >0

Let f(t) = sin(t) implying that u(0,t) = sin(t)

Let u(oo,t),t) = u(5.2,t) =0:¢t >0
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u(z,0) =0
u(x,0) =0
We fix n (from n=1) and vary m iteratively to obtain systems of equations

8.1.1 Forward Difference Scheme

In[12]:ListPlot3D

[0, 0.1986693308,0.3894183423,0.5646424734,0.7173560909,

0,0.147911,0.319491 ,0.48469,0.630683,0,0.0949205,0.229887,0.375187,0.514584,
0,0.0609145,0.163479,0.286306,0.413802,0,0.0390914,0.115148,0.21594,0.328767,
0,0.0250866,0.0804646,0.161439,0.25883,0,0.0160992,0.0558534,0.120115,0.202718,
0,0.0103315,0.0385489,0.0895383,0.158872,0,0.00663017,0.0264746,0.0676999,
0.125685,0,0.00425486,0.0181041,0.0531007,0.101642,0,0.00273052,0.0123331,
0.0448106,0.0853554, 0,0.00175229,0.00837354,0.0425446,0.0755013,0,0.00112452,
0.0056681,0.0288309,0.0562462, 0,0.000721646,0.00382638,0.019532,0.0413734,0,
0.000463104,0.00257675,0.013227,0.0301229, 0,0.000297184,0.00173132,0.00895258,
0.0217459,0,0.0001907,0.00116083,0.00605559,0.0155854, 0,0.000122355,0.000776737,
0.00409265,0.011099, 0,0.0000784825,0.000518628,0.0027628,0.00785728, 0,0.000050306,
0.000345408,0.00186166,0.00552855, 0,0.0000321906,0.000229197,0.00125036,0.00386182,
0,0.0000205135,0.000151099,0.000834386,0.00266941, 0,0.0000129389,0.000098298,
0.000549187,0.00181197, 0,0.00000795223,0.0000620512,0.000350337,0.00118598,

0,

0.00000455597,0.000036306,0.000206727,0.000713659, 0,0.00000297089,0.0000167287,
0.0000957841,0.000334773,0,0,0,0,0,

PlotLabel—” Graphical Presentation with FDS 7, AxesLabel—"tvalues”,”x val-
ues”,”u(x,t) values”,Shading— True]

Out[3]:-Surface Graphics-

8.1.2 Crank Nicolson Scheme

In[12]:ListPlot3D[0, 0.1986693308,0.3894183423,0.5646424734,0.7173560909,
0,0.148583,0.319312,0.482989,0.627138, 0,0.0973107,0.233105,0.377532,0.514727,
0,0.0637312,0.168371,0.291213,0.416658, 0,0.0417391,0.120556,0.222047,0.333098,
0,0.027336,0.0856915,0.167599,0.263317, 0,0.017903,0.0605332,0.125375,0.20605,
0,0.0117251,0.0425341,0.093047,0.159757, 0,0.00767905,0.029749,0.0685674,0.122831,
0,0.0050292,0.0207227,0.0502084,0.093721, 0,0.00329374,0.0143836,0.0365551,
0.0710113, 0,0.00215715,0.00995195,0.0264773,0.0534606, 0,0.00141276,0.0068662,
0.0190881,0.0400111, 0,0.000925244,0.00472529,0.0137026,0.0297829, 0,0.000605952,
0.00324471,0.00979862,0.0220584, 0,0.000396832,0.00222387,0.00698267,0.0162615,
0,

0.000259864,0.0015221,0.00496082,0.0119362, 0,0.000170143,0.00104124,0.00351544,
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Figure 3: Graphical Presentation Using FDS with # =5 and r=1

0.00872554, 0,0.000111358,0.000713128,0.00248651,0.00635306, 0,0.0000728198,
0.000490753,0.00175712,0.00460624, 0,0.0000475214,0.000341958,0.00124218,0.00332264,
0,0.0000308633,0.000245126,0.000879909,0.00237855, 0,0.0000198166,0.00018623,
0.000625131,0.00167946,0,0.000012373,0.000118614,0.000412762,0.00112698, 0,
0.00000717908,0.0000699052,0.000250027,0.000691476, 0,0.00000329041,0.0000323639,
0.000117774,0.000328429,0,0,0,0,0,

PlotLabel —” Graphical Presentation with CNS 7, AxesLabel—"t values”,”xvalues”,” u(x,t)
values” ,Shading— True]

Out[4]: -Surface Graphics-

From the graphics, the following can be interpreted: The surface of the plot

is not smooth because the differential equation is satisfied only at a selected

number of discrete nodes within the region of integration.
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Garhical Pressntation with OB

Figure 4: Graphical Presentation Using CNS with 5 =5 and r=1

8.2 Comparison of Numerical Results

The numerical computational results for solutions of equation (1.1) were ob-
tained. The mesh ratios were varied and their effects on the stability of the two
schemes were noted. The results showed that as the mesh ratio reduces, the so-
lutions tend towards the true solution for both schemes, CD-FD and CN-FD. In
addition, CD-FD scheme showed consistency with the original equation (1.1).
According to fundamental theorem of numerical analysis, a scheme which is
stable and shows consistency is convergent, [1].

8.3 Discussion

From presentations of the solutions, it can be observed that,

(a)for a given value of z,u(x,t) =~ U,,, increases to nearly one as t tends to
infinity

(b)for a given value of t,u(x,t) ~ U,,, decreases to nearly zero as z tends
to infinity. Propagation of waves can be a very slow process. As in ground
waves, fluid moves a few meters in several years. That is why the slope of the
surface decreases slowly. In this study, we used propagation of waves as seen
on guitar strings or a drum head to simulate the waves. Mechanical periodical
vibrations always cause sound. The sound waves propagate without losses only
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under this assumption of an ideal medium. In reality, sound propagation in
a viscous fluid is damped; that is, the amplitude of the pressure of the sound
wave decreases with increasing distance from the sound source, [12]. Our re-
sults from the two numerical schemes, CD-FD and CN-FD, confirm this since
the displacement of the particles given by wu(z,t) decrease and tend towards
zero with an increase in the distance from the source (in this case at ¢t = 0).

8.4 Conclusion

This study focused on the third order viscous sound wave equation. The
objectives of this study were: first, to solve the model equation (1.1) using
FDM. To pursue this objective, we discretised the equation, developed two
numerical schemes, namely CD-FD and CN-FD Schemes. Numerical solution
algorithms were developed, and Mathematica software used to generate so-
lutions to the third order viscous wave equation. The study found that both
schemes were conditionally stable. We restricted the mesh size ratio (3 = k/h?
and r = k*/h?, (h = A(z),k = A(t)) and even the upper limit on the values
of xz. CD-FD and CN-FD analogues were used for u,,; and came up with two
sets of results respectively; Case One for a larger mesh ratio and the other
for a slightly smaller case two. The two schemes have produced nearly similar
results. We managed to come up with the numerical solution system to the
viscous wave equation under study and the results interpreted.

8.5 Recommendations

For further research, we recommend the following:

(i) Use of Von Neumann method to test stability analysis of FDM for equation
(1.1)

(ii) Explore an analytical solution to this problem using other methods apart
from Laplace Transforms.

(iii) Use a centred-central or centred-backwards analogue of u,,; to come up
with the schemes and solve the equation then compare the results.

(iv) Implement the finite-difference method on an unstructured grid as well
which is rare.

(v) Find a numerical solution to this equation by finite element method and
compare the results.
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