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Changing patterns of human aggregation are thought to drive
annual and multiannual outbreaks of infectious diseases, but the
paucity of data about travel behavior and population flux over time
has made this idea difficult to test quantitatively. Current measures
of human mobility, especially in low-income settings, are often
static, relying on approximate travel times, road networks, or cross-
sectional surveys. Mobile phone data provide a unique source of
information about human travel, but the power of these data to
describe epidemiologically relevant changes in population density
remains unclear. Here we quantify seasonal travel patterns using
mobile phone data from nearly 15 million anonymous subscribers in
Kenya. Using a rich data source of rubella incidence, we show that
patterns of population travel (fluxes) inferred from mobile phone
data are predictive of disease transmission and improve significantly
on standard school term time and weather covariates. Further,
combining seasonal and spatial data on travel from mobile phone
data allows us to characterize seasonal fluctuations in risk across
Kenya and produce dynamic importation risk maps for rubella.
Mobile phone data therefore offer a valuable previously unidenti-
fied source of data for measuring key drivers of seasonal epidemics.

rubella | mobile phones | population mobility | Kenya | seasonality

easonal variation in infectious disease incidence is a ubiqui-

tous phenomenon observed for a range of pathogens such as
malaria, measles, and influenza (1-7). Understanding and quanti-
fying key mechanisms that drive seasonal variability such as climatic
conditions (malaria and influenza) or patterns of human aggre-
gation (measles and influenza) contribute to our fundamental
understanding of epidemic dynamics; they also have important
implications for evaluating public health measures that may reduce
transmission such as vaccination and school closures (8-11).

The effectiveness of any public health measure designed to
reduce seasonal transmission by modifying patterns of human
aggregation and travel will depend on the degree to which trans-
mission depends on population density and movement. Direct
measures of population travel are rare (2, 4, 12, 13). As a result,
proxy measures such as school terms and rainfall patterns have
been used (1, 9, 13-15). Term time forcing, where school-driven
aggregation leads to seasonal peaks of transmission for directly
transmitted immunizing infections such as measles, mumps, and
rubella, has been observed in many high-income countries (8, 16,
17) [England and Wales (8), Peru (15), and Denmark (17)]. On
the other end of the spectrum in the low-income, predominantly
agricultural context of Niger (13), analysis of night lights indicates
that peaks in transmission reflect population changes resulting
from annual mass migrations of individuals between agricultural
areas to cities in the dry season (1). School terms and holidays
versus agricultural movements likely represent the extremes in
terms of density-related drivers of transmission in high- and low-
income settings, respectively. Identifying where other low-income
countries lie along this continuum will be important in order to
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plan public health measures and understand the dynamics of these
infectious diseases.

Recently, the ubiquity of mobile phone ownership and use,
particularly in low-income settings, has produced vast datasets on
the individual movement patterns of millions of people (18-20).
These data represent a potentially valuable previously unidentified
resource for the direct observation of seasonal population dy-
namics on refined spatial scales that underlie disease transmission.
Unlike other static measures of travel such as road networks,
small-scale surveys, travel time surfaces, or census data, mobile
phone data can provide a dynamic picture of mobility and pop-
ulation travel and changes over large geographic scales (1, 5, 12,
13, 21). However, their relevance to infectious disease dynamics
has yet to be formally assessed, requiring parallel longitudinal
estimates of phone use and transmission rates (19). For example,
although we have previously estimated the rate of malaria im-
portation across Kenya using spatially stratified prevalence esti-
mates in combination with mobile phone data (20), because these
estimates were static, the interaction between temporal dynamics
in human mobility and malaria incidence was impossible to assess.

Here we analyze anonymous mobile phone call records in-
cluding the location of the routing tower and timing of each
call and short message service (SMS) communication between
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14,816,512 subscribers during June 2008 to June 2009 (with Feb-
ruary 2009 missing from the dataset) to quantify daily travel
patterns (referred to as population fluxes) between provinces
(Materials and Methods and Supporting Information). We combine
this with a long-term and highly detailed dataset on rubella in-
cidence to measure how key drivers of human aggregation are
associated with disease transmission in this setting.

Results

Transmission and Mobile Phone-Derived Population Fluxes. Unlike the
classical two-peak seasonal pattern of many immunizing childhood
infections, including rubella (e.g., in Peru, Mexico, Japan, South
Africa, and Canada), rubella in Kenya exhibits three peaks of
incidence each year (Fig. 1 A and B and Figs. S1 and S2) (15, 22—
25). Similar patterns have been reported in other countries in East
Africa, suggesting regional consistency (26). In the majority of
provinces, transmission peaks in September and February (except
Northeastern province, where inference is weak given paucity of

data; Fig. S1). Epidemiological mechanisms driving this within-
year triple peak in incidence are the occurrence of three yearly
troughs in transmission (Fig. 1C) and the relatively low Ry of this
infection (Materials and Methods and Supporting Information).
To measure the ecological and spatial mechanisms contributing
to the three troughs in transmission, we turned to both previous
proxy measures of movement and a previously unidentified mea-
sure extracted from anonymized mobile phone data. For the
latter case, we constructed a daily location for each subscriber
and calculated the number of trips from all subscribers between
provinces (eight total provinces) per day (Materials and Methods,
Fig. 24, Supporting Information, and Fig. S3) (20). These sub-
scriber locational time series were aggregated to create a province-
level daily population flux that described the number of journeys
originating from each province per day. This province-level time
series was decomposed using a moving average, and the trend was
analyzed (Materials and Methods and Supporting Information).
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Fig. 1. The rubella patterns in Kenya. (A) Over the course of the rubella dataset (January 2008 to January 2012), the biweekly number of reported rubella

cases is shown. (B) A map of Kenya with provinces outlined in red along with the rubella case data per province. (C) The monthly transmission (beta) estimates
per province. In the majority of provinces, there are two pronounced peaks in transmission during September and January-March with a number of locations
also peaking in May-June (see Central province in red, for example). The peaks in transmission varied geographically with the Nyanza province peaking in
February, for example.
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Fig. 2. The relationship between population flux, rainfall, school terms, and rubella transmission per province. (A) The normalized population fluxes
measured from the mobile phone data per month in each province with months ordered from the start of the dataset (June) until the following May. In
nearly all provinces, travel peaked in December and July/August, although this varied by location. (B) Monthly mean values from provinces for transmission
and the three covariates (rainfall, school terms, and population flux). The time series is shown highlighting the variability in these estimates over the course of
the year. We would expect that transmission would decrease during school breaks (white area) and population fluxes would increase during these times
(white area). (C) Using the province level covariates shown in B, we constructed a number of models using various subsets of the covariates to predict
transmission values. The estimated (from the TSIR model) versus predicted values for transmission (to aid with comparison a black xy line is drawn) from the
minimum adequate model (black, includes population flux and school terms as covariates) and a model based on only school terms (red) or rainfall (blue). The
model based on movement and school terms (adjusted R%>=0.19, P < 0.001) provides the best estimates (only rainfall, adjusted R?=0.03, P=0.056; only school
terms, adjusted R? = 0.09, P = 0.003). In comparison, the model based only on school terms only produces two transmission values, whereas the model based
only on rainfall produces estimates over a smaller range than the model including population flux.

As has been found in high-income settings, but in contrast to
other African countries, rubella transmission was strongly posi-
tively related to school term times (¢ test, = —3.6681, df = 80.505,
P < 1e-3 for provinces excluding the Northeastern province where
power for analysis was weak); transmission was not significantly
correlated with rainfall (mean correlation coefficient, —0.13; 95%
quantile interval, —0.34, 0.07, P > 0.2, excluding the Northeastern
province; Fig. S3 and Table S1) (1, 13, 27, 28). There was also a
strong positive relationship with province-level population flux in
the previous month normalized for each province (mean cor-
relation coefficient, 0.38; 95% quantile interval, 0.18, 0.55, P < 1e-3,
excluding the Northeastern province). We further analyzed the
relationship between these variables for districts (68 districts in
Kenya), and although there exists heterogeneity between loca-
tions, we found the same broad general relationships (Fig. S4).

To explore the relative importance of the three drivers, we fit all
three (rainfall, school terms, and population flux; Fig. 2B) as main
effects in a linear regression with seasonal transmission as the
response variable (excluding the Northeastern province and taking
the square root of the response variable to normalize the errors).

11116 | www.pnas.org/cgi/doi/10.1073/pnas.1423542112

Including population flux significantly improved the model
(Fis2 = 19.59, R* = 0.19, P < 0.001; Table S2 and Fig. 2C), and
further including either rainfall (F; g, = 0.40, P > 0.5) or school
terms (Fyg; = 3.41, P > 0.05) did not significantly improve the
model fit (see Supporting Information for models including site
effects; results remain qualitatively the same). To highlight the
improved ability of population fluxes to predict transmission we
also constructed two comparison models using either only rainfall
or only school terms (Fig. 2C; also see Tables S2 and S3 and Fig.
S5); these two models explained considerably less of the variance,
with adjusted R? values of adjusted R* = 0.03 (P = 0.056) and
adjusted R? = 0.09 (P = 0.003), respectively.

Population-Scale Consequences of Seasonal and Spatial Population
Fluxes. With evidence that the mobile phone data captures epi-
demiologically relevant human movements for rubella in Kenya,
we next used the mobile phone data to construct maps to charac-
terize spatial and temporal patterns of risk of rubella introduction
based on population fluxes across the country on scales finer than
possible using only the rubella data (Fig. 3). We recalculated the
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population flux per district (Materials and Methods) and analyzed
these finer spatial data. We identified both areas at a high risk for
rubella introductions and how these locations and assessment of
risk varied over the year. As suggested in Fig. 1, areas most at risk
vary over the course of the year, although Nairobi District and
districts in the Central province remain at high risk throughout the
year (Fig. 3). During school terms, the risk decreases across the
entire country, although the most noticeable differences are in
western Kenya, where the risk during school breaks is relatively
much higher than during the term. Given the variability in the
amount of risk and the location of these risks over the course the
year, spatially and temporally targeted control will be essential to
maintaining gains that follow introduction of vaccination.

Discussion

Our analysis of population fluxes from mobile phone data and
rubella transmission dynamics shows that mobile phone data may
be used to capture seasonal human movement patterns relevant
for understanding childhood infection dynamics and significantly
outperform previous proxies used in this context (1, 13). This
suggests that mobile phone-derived data may represent an im-
provement on broadly used qualitative correlates of temporal
variations in transmission (schools terms, measured as “on” or
“off”; Fig. SS5) or suspected phenomenological drivers (rainfall,
where the strength of the relationship is likely to be highly
spatially variable).

The power of population fluxes quantified by mobile phone data
to describe patterns of transmission linked to childhood infections is
somewhat surprising because previous work suggests that mobile
phone ownerships is concentrated in adults and toward urban, more
educated males (29, 30). However, this supports previous evidence
that children rarely travel without adults and also underscores the
importance of these population-scale movements for dynamics of
infections like rubella (31). Although mobile phone data are in-
herently biased by ownership, there exist few data sources that can
directly record daily movement patterns over the range of spatial
(the dynamics of an entire country) and temporal (12 months of
data) scale. We also analyzed the role of birth seasonality on ru-
bella dynamics and did not find a strong association between
transmission and seasonal birth rates (Supporting Information and
Fig. S6). Moreover, a detailed age-structured simulation confirms

A -

December - School Holiday March - School Term

Fig. 3. The seasonal variability in the risk of importation. We analyzed the av-
erage amount of population flux per district during (A) the major holiday and a
school term break (December) and (B) during a school term (March). As high-
lighted in Fig. 1, there are large amounts of population flux and consequently the
risk of importation during school breaks (A and B). In contrast, there is a decrease
in the risk of importation during the school term. During the course of the year,
the districts with the largest risks vary with higher risks to western Kenya during
school breaks. However, Nairobi (shown in red in both maps) consistently remains
at a high risk of importation from the large population fluxes.
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that the average age of infection for rubella in Kenya makes the
effect of susceptible births on the dynamics negligible (Supporting
Information) (32).

Rubella incidence is frequently underreported, as a result of
the mild, even asymptomatic manifestation of the infection (15).
Evidence that mobile phone data can capture population fluc-
tuations that relate to rubella transmission provides grounds for
optimism that patterns of incidence might be inferred indirectly.
This is relevant not only to projecting timing of outbreaks but
also, if epidemiologically relevant movement can be measured,
to predicting patterns of increased congenital rubella syndrome
(CRS) incidence stemming from metapopulation dynamics [local
extinction of rubella followed by aging of susceptibles into child-
bearing ages means that subsequent introduction of rubella can
result in CRS cases (15)]. Because introduction of rubella-con-
taining vaccine is increasingly being considered across low-income
countries (33), this could be used to help guide targeted vac-
cination efforts spatially and also to infer effects of geographic
heterogeneities in vaccination coverage on the CRS burden (22),
although more work would need to be conducted to fully under-
stand the relationship between mobility measured via mobile
phones and the populations of interest. Many of the same prin-
ciples that apply to rubella also apply to measles, which is of in-
creasing relevance because all WHO regions currently have
measles elimination targets. As we move toward elimination goals
for measles or other vaccine-preventable infections, mobile phone
data offers enormous potential for quantifying daily movement
patterns at particular spatial scales, which will be important in
order to maintain elimination gains by indicating key areas to
target to minimize reintroductions and ongoing spread. The res-
olutions of these data are variable, however, so the utility of this
approach will need to be considered separately for different policy
questions. In particular, mobile phone data can primarily describe
within-country movement patterns on a relatively large spatial
scale and so will be less relevant for public health planning when
either international travel has large effects on disease dynamics or
transmission is highly spatially localized.

Seasonality is a characteristic feature of many pathogens (6),
thereby driving the time of interventions (e.g., influenza vaccina-
tion and seasonal malaria chemoprophylaxis). For immunizing
infections like rubella, interannual fluctuations in transmission can
result in complex multiannual dynamics (34), which may affect the
outcome of vaccination programs (13). For vector-borne diseases,
seasonality can be influenced by both environmental and behav-
ioral conditions, making determining optimal timing for interv-
entions dependent on being able to quantify both of these factors.
Using mobile phone data we can measure both broad seasonal
patterns (country-wide dynamics) as well as the variability in
seasonal travel on smaller spatial scales that are unobtainable
from many existing datasets (see Supporting Information for dis-
trict-level analysis). A major result of our analysis, that mobile
phone data capture epidemiologically relevant movement, in-
dicates that this approach represents a powerful tool for quanti-
fying critical drivers of epidemics on epidemiologically relevant
spatial and temporal scales. Further investigations to calibrate the
relevance of this effect across a broad array of systems will be an
important direction for future research.

Materials and Methods

Mobile Phone Data. The leading mobile phone operator in Kenya provided
anonymous mobile phone call records that recorded the location of the routing
tower and timing of each call and SMS communication between 14,816,512
subscribers during June 2008 to June 2009 (with February 2009 missing from the
dataset) (4, 18). In total, over 12 billion mobile phone communications were
recorded, including the communication’s location at one of 11,920 routing
towers. The operator that provided the call data records had ~92% market
share at the time of data acquisition. All subscriber data were aggregated to
either the province- or district-level scale to further preserve anonymity. These
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data were deidentified at the mobile phone operator, contain no personal
information, and are considered nonhuman subject research.

Quantifying Population Fluxes. From the mobile phone data the geographic
location of the caller and receiver was approximated based on the unique
longitude and latitude coordinates for each mobile phone tower. Using the
data, a location for each subscriber every time they either made or received a
call (or SMS) was obtained. For each day in the dataset, subscribers were
assigned a single tower location. If the subscriber made at least one call on
that day, then the location of the majority routing tower was assigned. If the
subscriber had not made a call on that day, then the location of their most
recent routing tower was assigned. This provided a 12-mo time series of tower
locations for each subscriber on each day. As in previous studies, trips are
calculated by observing when a subscriber’s tower location has changed from
the previous day (4, 20). For the majority of the analysis, we aggregated
towers to the province level based on the tower’s location. Thus, only trips
between towers in different provinces were considered. We constructed a
time series of outgoing travel/population flux for each province (Fig. S3).
Incoming and outgoing travel/population fluxes were highly corrected
(Pearson’s correlation coefficient: 0.997, P < 0.001). We decomposed each
time series using a moving average and then analyzed the resulting trend.
Although mobile phone data ownership is biased toward urban, more ed-
ucated males, we have previously shown that this does not significantly bias
mobility estimates (29, 30). We also aggregated towers to the district level
based on the tower’s location and recalculated these flux values for travel
from each district to all other districts.

Population Data. Estimates of population sizes and numbers of live births for
2009 were obtained from the WorldPop project (www.worldpop.org.uk)
using the spatial datasets that were constructed using the methods outlined
by Tatem et al. (35) and Linard et al. (5). In brief, 2009 census data at sub-
location level were matched to the relevant administrative boundaries and
then combined with satellite-derived settlement and land cover data layers
to disaggregate the counts to 100-m spatial resolution. Five-year age and sex
groupings of population at sublocation level from the census were then
used to adjust the output gridded population surface to create a set of 5-y
age grouped surfaces that covered all women in the age range 15-49
(women of childbearing age). Subnational urban-rural age-specific fertility
rates derived from the most recent demographic and health survey for
Kenya (www.dhsprogram.com) were then used to convert these age-struc-
tured female count datasets into surfaces of estimates of numbers of live
births per grid square.

Rubella Data and Dynamics. Concerns about increases in the burden of con-
genital rubella syndrome have meant that vaccination against rubella has yet
to be introduced in many Sub-Saharan African countries including Kenya, and
rubella remains prevalent. Using over 9 y of data on rubella cases (n = 5,590)
from each Kenyan province (Fig. 1 A and B, Materials and Methods, Fig. S1,
and Supporting Information), we quantified seasonal fluctuations of trans-
mission via a time series susceptible—infected-recovered model fitted using
trajectory matching with a binomial observation model for case reporting.
Seasonal estimates of transmission are shown in Fig. 1C; corresponding
matched trajectories are in Fig. S1.
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Quantifying Seasonal Fluctuations in Transmission for Rubella. Rubella is a com-
pletely immunizing infection with a generation time (serial interval; approxi-
mately the latent plus infectious period) of ~18 d (36). We therefore assumed
that the time scale of the epidemic process was approximately 2 wk. The
number of infected individuals observed after a 2-wk period, /1,1, depends on /;
and the number of susceptible individuals S; with expectation 1; = BsSd:"IN;,
where g; is the transmission rate in every biweek in any particular location and
the exponent m, usually a little less than 1, captures heterogeneities in mixing
not directly modeled by the seasonality (8) and the effects of discretization of
the underlying continuous time process. Dividing by N; captures the fact that
social contact networks tend to remain stable with population size. In the same
time frame, the number of susceptible individuals will be depleted by this
number of new infected individuals and augmented via births. We can there-
fore generate the full trajectory of susceptible and infected individuals through
time as

lesr =S [Ny
St+1=St+Bt 1y,

where B; is the number of births, j is seasonally varying transmission rates,
and initial conditions are set by initial numbers of infected /o and suscepti-
bles So. To infer the unknown parameters (5, o and So, and m) we can link
this to data by the relationship

1)+ =Binomial(f¢ + 41, p),

where p is the reporting rate and I(T') is the reported number of infected cases
at a monthly time scale; the sum is taken over the previous 2 wk. We have
previously found that low reporting rates result in strongly downward bi-
ased estimates of m, which result in unrealistic dynamics (15); this also
proved to be the case here. For this analysis, we therefore fixed m at a
consensus value of 0.97. Previous work (17) indicates that the exact value of
m does not affect estimates of seasonal variation in transmission. We fit a
different transmission parameter for every site in every month, to quantify
how transmission varied throughout the year within each province, and
then explored the degree to which the various proxies (including rainfall,
school term times, and population flux quantified as above) performed as
explanatory variables for fluctuations in transmission.
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