
LIE SYMMETRY SOLUTIONS OF SAWADA- KOTERA

EQUATION

Winny Chepngetich

A Thesis Submitted to the Board of Graduate Studies in Partial

Fulfilment of the Requirements for Conferment of the Degree of

Master of Science in Applied Mathematics of the University of

Kabianga

UNIVERSITY OF KABIANGA

October, 2019



TABLE OF CONTENTS TA-

BLE OF CONTENTS

1



DECLARATION AND APPROVAL

Declaration

This thesis is my original work and has not been submitted for the conferment of

a degree or for the award of a diploma in this or any other university;-

Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Date. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Winny Chepngetich,

PGC/AM/001/15

Approval

This thesis has been submitted for examination with our approval as the Univer-

sity supervisors:

Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Date. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Prof. Maurice O. Oduor

Department of Mathematics and Computer Science,

University of Kabianga

Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Date. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dr. John K. Rotich

Department of Mathematics and Computer Science,

University of Kabianga

ii



COPYRIGHT

All rights reserved. No part of this Thesis may be reproduced or transmitted

in any form by means of either mechanical,photocopying, recording or any other

information storage or retrieval system without permission in writing from the

author or University of Kabianga.

c© Winny Chepngetich, 2019

iii



DEDICATION

I dedicate this thesis with love, respect and gratitude to my dear husband Wesley,

son Allan and daughters Annet and Annita for their support and encouragement.

iv



ACKNOWLEDGEMENT

I thank God for His favour, mercies and guidance during the process of this work.

I acknowledge with appreciation, the enthusiasm and professionalism of my su-

pervisors Prof Maurice Oduor and Dr. John Rotich for their support, creative

inspiration, mentorship skills as well as the profound competence without which

it would have been extremely difficult for me to complete this work. I salute them

for their tireless efforts, able leadership and great wealth of knowledge and expe-

rience.

v



ABSTRACT

The problems of differential equations are encountered in physical fields, engi-
neering fields and mathematical world thus it is so important to find their exact
solutions.The exact solutions of partial differential equations and ordinary differ-
ential equations have been sought by scholars for a number of decades. Researchers
have used Lie symmetry approach to solve ordinary differential equations and par-
tial differential equations. The progressive wave solution of one-dimensional wave
equation was first discovered by Jeane Le Rond D’ Atemmbert (1717-1783).His
solution was a special application of the method of characteristics. The Sawada-
Kotera equation is a special form of wave equation and the generalized Riccati
equation mapping with the essential quotient group expansion techniques on con-
structing plentiful traveling wave results has been used in the past to solve the
Sawada-Kotera equation among many other methods but the results the were not
easily found since one could make errors during the plotting of graphs. In this
study, we concentrated on analysis of fifth order Sawada-Kotera equation of the
form; ut + 45u2ux + 15uxuxx + 15uuxxx + uxxxxx = 0 using Lie symmetry analysis
because the solution does not depend on the initial and boundary values hence is
not an approximation to the exact solution and it has not been solved previously
using this method. The study aimed at obtaining all the Lie groups admitted by
the equation, invariant and exact solutions and symmetry solutions. The method-
ology involved application of infinitesimal transformations and generators, prolon-
gations, adjoint symmetries, variation symmetries, invariant transformation and
integrating factors so as to establish all the Lie groups shown by the equation.Our
obtained solutions demonstrated that Lie symmetry analysis method is a sraight
forward and best mathematical tool used to obtain analytical solutions of highly
nonlinear PDEs.
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CHAPTER ONE

INTRODUCTION

1.1 Overview

This chapter entails the background of the study, basic concepts,statement of the

problem, objectives of the study and the significance of the study.

1.2 Background of the Study

Lie symmetry group theory of differential equations has been in existence since

19th century. It was developed by Sophus Lie . He introduced the use of groups

of transformations known as Lie groups in the research of differential equations’

symmetry properties and their results. In this case a symmetry group outlines

results of the system to another result of a similar system. Yaglom et al. [39].

Solving equations has been one of the most important driving forces in the history

of Mathematics. Nonlinear PDEs and ODEs have been of great interest in the

recent years because they are applied in physical, financial, engineering and math-

ematical fields since it is considered that solving problems of PDEs and ODEs is

very important in applied Mathematics.

Lie did not only give the solution of the problems but also instituted a new branch

of Mathematics in the field of symmetry.

In spite of the existence of literature on Lie groups, group theory has not been in

use lately due to the following factors:

(i) Most scholars believe that there is difficulty in finding symmetry group of an

equation as it is to solve it,

(ii) It is believed that Lie groups provide randomly occurring particular solutions

only and
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(iii) It is considered to be only useful for linear equations.

In this study, we have applied Lie symmetry analysis in the solution of Sawada-

Kotera equation which is a fifth order nonlinear wave equation expressed as

ut+45u2ux+15uxuxx+15uuxxx+uxxxxx = 0 (1.1)

1.3 Basic Mathematical Concepts

The following terms have been used in the study.

Definition 1.2.1 A Group

A group P is a non empty set of elements with a law of composition α between

the elements of P which satisfy the conditions below [5]:

(i) Closure property

For elements m and n of P, α(m,n) is an element of P .

(ii) Associative property

For some elements m,n and k of P, α[m,α(n, k)] = α[α(m,n), k]

(iii) Identity element

There exist a unique identity element e of P such that for any element m of

P, α(m, e) = α(e,m) = m

(iv) Inverse element

For some element m of P there exist a unique inverse element m−1 in P such that,

α(m,m−1) = α(m−1,m) = e.

Definition 1.2.2 An Abelian Group

A group P is abelian if α(m,n) = α(n,m) hold for all elements m,n ∈ P .[8]

2



Definition 1.2.3 A subgroup

A subgroup of P is a group formed by a subset of elements of P with the same

law of composition α.

Definition 1.2.4 Point Transformation

Consider the point X = (x1, x2, . . . .xn) which lies in the domain B ⊂ Rn in

n-dimensional space, then x∗ = f(x; ε) is a set of point transformation.

Definition 1.2.5 Group of Transformations

Let X = (x1, x2. . . . . . . . . .xn) ∈ B ⊂ Rn. It follows that the set of transformation

x∗ = f(x; ε) defined for every x in B depending upon a parameter ε lying in a set

A ⊂ R with α(ε, δ) defining a law of composition of parameter ε and δ in A forms

a set of transformations in B if and only if [6]:

(i) For every parameter ε ∈ A, the transformations are one to one and onto B and

more specifically x∗ lies in B.

(ii) A with the law of composition α forms a group P .

(iii) X∗ = X where ε = e such that X(x; e) = X

(iv)If x∗ = f(x; ε), x∗∗ = f(x∗; δ) then x∗∗ = f(x;α(ε, δ)).

Definition 1.2.6 An Orbit

An orbit of a point X = (x1, x2, . . . , xn) is a set of points x∗ = x∗(ε) for every

ε ∈ A

3



Definition 1.2.7 A One-parameter Lie Group

A group of transformation describes a one parameter Lie group of point transfor-

mation if besides satisfying the properties of x∗ = f(x; ) as above, it also states

that:

(i) A is an interval in R and ε is a continuous parameter; such that ε = 0 corre-

sponding to the identity element e.

(ii) f is infinitely differentiable with respect to x in B and also a systematic func-

tion of ε in A.

(iii) α(ε, δ) is a systematic function of ε, δ ∈ A and thus α(m,n) = m + n for lie

groups.

Definition 1.2.8 A Two-parameter Lie Group

A two-parameter group of transformation x∗ = f(x; ε) with x = (x1, x2 . . . xn) and

parameters ε = (ε1, ε2) is called a two- parameter lie group of transformation if it

also satisfy the properties (i), (ii) above and the composition laws of parameters are

denoted by φ(ε, δ) = (φ1(ε, δ), φ2(ε, δ)) which is an analytic function of ε = (ε1, ε2)

and δ = (δ1, δ2) in A.

Theorem 1.2.1 Lie’s first fundamental theorem

There exists a parameterization β(ε) such that the Lie group of transformations

x∗ = f(x, ε) is equal to the solution of the initial value problem (IVP) for the first

order differential equations

dx∗

dβ
= α(x∗) (1.2)

with initial conditions x∗ = x, when β = 0 (1.3)

Particularly β(ε) =
∫ 1

0
α(ε

′
)dε

′
(1.4)

4



where α(ε′) = ∂λ(ε,δ)
∂δ
|(ε,δ)=(ε−1,ε) (1.5)

and α(0) = 1. (1.6)

whereby ε−1 denotes the inverse of ε.

Proof

First we show that x∗ = f(x, ε) leads to (1.2), (1.3), (1.4), (1.5). Expand the left

hand side of f(x; ε+4ε) = f(f(x; ε);λ(ε−1, ε+4ε)) (1.7)

in a power series in 4ε about 4ε = 0 so that

f(x; ε+4ε) = x∗ + ∂f(x;ε)
∂ε
4 ε+ 0((4ε)2) (1.8)

where x∗ is given by x∗ = f(x, ε). Then expanding λ(ε−1, ε+4ε) in a power series

in 4ε) about 4ε = 0 we have

λ(ε−1, ε+4ε) = λ(ε−1, ε) + α(ε)4 ε+ 0((4ε)2)

= α(ε)4ε+0((4ε)2) (1.9)

where α(ε) is defined by equation (1.5). Consequently, after expanding the right-

hand side of equation (1.7) in a power series in 4ε about 4ε = 0, we obtain

f(x; ε+4ε) = f(x∗;λ(ε−1, ε+4ε))

= f(x∗;α(ε)4 ε0((4ε)2))

= f(x∗; 0) + α(ε)4 ε∂f
∂δ

(x∗; δ)|δ=0 + 0((4ε)2))

= x∗ + α(ε)ψ(x∗)4 ε+ 0((4ε)2)). (1.10)

Equating (1.8) and (1.9) we see that x∗ = f(x; ε) satisfies the initial value problem

for the system of differential equations

dx∗

dε
= α(ε)α(x∗) (1.11)

with x∗ = x at ε = 0. (1.12)

From x∗ = x + εα(x) +0 (ε2) it follows that α(0) = 1. The parameterization

β(ε) =
∫ t
0
α(ε

′
)dε

′
leads to (1.2) and (1.3).

Since ∂α(x)
∂xi

, i = 1, 2, 3...., n is continuous, it follows from the existence and unique-

ness theorem for an (IVP) for a system of first order differential equations, that

the solution of (1.2) and (1.3), and hence (1.11) and (1.12), exists and is unique.
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This solution must be x∗ = f(x, ε) , which completes the proof.

From the theorem, we assume that a one-parameter (ε) Lie group of transforma-

tions is parameterized such that its laws of composition λ(ε, δ) = ε+ δ

And ε−1 = ε, where ε is the neutral element. That is the one-parameter Lie group

of transformations x∗ = f(x, ε) now becomes;

dx∗

dε
= α(x∗)

with initial conditions x∗ = x, at ε = 0 (1.13)

where α(x) is the infinitesimal of x∗ = f(x, ε).

Definition 1.2.9 Vector Field

A vector field C on a set D allocate a tangent vector C|x into every position x ∈ D,

which are varying smoothly from position to position. In general coordinates

(x1, . . . , xm) a vector field is expressed in the form C|x = γ1(x)∂/∂x1+γ2(x)/∂x2+

. . .+γm(x)∂/∂xm in which γi is a smooth function of x which can be differentiable

[27].

Definition 1.2.10 Commutator

If T1 and T2 are vector fields then their commutator also called Lie bracket is

defined as [T1, T2] = T1T2 − T2T1

Example

Given two vector fields expressed as:

T1 = ∂
∂x

T2 = x ∂
∂x

+ 6
7
y ∂
∂y

The commutator of these vector fields is

[T1, T2] = ( ∂
∂x

)(x ∂
∂x

+ 6
7
y ∂
∂y

)− (x ∂
∂x

+ 6
7
y ∂
∂y

)( ∂
∂x

)

= (∂(x)
∂x

) ∂
∂x

+ x ∂2

∂x2
+ 6

7
∂(y)
∂x

) ∂
∂y

+ 6
7
y ∂2

∂x∂y
− x ∂2

∂x2
− 6

7
y ∂2

∂x∂y

= ∂
∂x

+ x ∂2

∂x2
+ 0 + 6

7
y ∂2

∂x∂y
− x ∂2

∂x2
− 6

7
y ∂2

∂x∂y

6



= ∂
∂x

= T1

Definition 1.2.11 Lie Algebra

A Lie algebra W is a vector space, on which commutation is defined and satisfies

the following properties:

(i) Closure T1, T2 ∈ W such that [T1, T2] ∈ W

(ii) Antisymmetry [T1, T2] = −[T2, T1]

(iii) Bilinearity [k1T1 + k2T2, T3] = k1[T1, T2] + k2[T2, T3] and [T1, k1T2 + k2T3] =

k1[T1, T2] + k2[T1, T3] where k1 and k2 are constants.

(iv) Jacobi identity [T1, [T2, T3]] + [T2, [T3, T1]] + [T3, [T1, T2]] = 0 for all T1, T2 and

T3 in W .

If [T1, T2] = 0 then T1 and T2 commute and when all elements of W commute, W

is known as an abelian lie algebra.

Definition 1.2.12 Solvable Lie Algebra

A solvable lie algebra W with the series that are derived as

W ⊃ W
′
= [W,W ]

⊃ W
′′

= [W
′
,W

′
]

⊃ W
′′′

= [W
′′
,W

′′
]

⊃ . . . .

⊃ W (a) = [W (a−1),W (a−1)]

such that W (a) = 0 for some a > 0.

7



Theorem 1.2.2 Lie’s Second Fundamental Theorem

The commutator of some two given infinitesimal generators of a k-parameter Lie

group of transformations is also an infinitesimal generator, in particular

[wi, wj] = cnijwn (1.14)

Whereby the coefficients cnij are constants and i, j, n = 1, 2, 3, . . . ..k

For any given three infinitesimal generators wi, wj, wn it is always true that

[wi, [wj, wn]] + [wj, [wn, wi]] + [wn, [wi, wj]] = 0 (1.15)

Equation (1.15) represents Jacobi’s identity.

For proof, see [28].

Theorem 1.2.3 Lie’s Third Fundamental Theorem

The constants, described by the commutation (1.2) satisfy the relations

cnij = cnji (1.16a)

ckijc
m
kn + ckjnc

m
km + cknic

m
kj = 0 (1.16b)

and [αwi + βwj, wl] = α[wi, wj] + β[wj, wl], [wi, αwj + βwl] = α[wi, wj] + β[wi, wl]

For proof, see [6].

Infinitesimal generators (wi) for i = 1, 2, 3, ..., n described above, satisfy bilinear

property in the commutator equations given as

[αwi + βwj, wl] = α[wi, wj] + β[wj, wl],

[wi, αwj + βwl] = α[wi, wj] + β[wi, wl] (1.16c)

Definition 1.2.13 Infinitesimal Transformation

Consider a one parameter transformation x = X(x, y; ε) and y = Y (x, y; ε) in

which ε is a continuous parameter. Expansion of this transformation using Tay-

lor’s series at the point ε = ε0 yields

x = x+ (∂X
∂ε

)ε=ε0(ε− ε0) + . . .

8



y = y + (∂Y
∂ε

)ε=ε0(ε− ε0) + . . .

Considering the group parameter ε that is evaluated at ε = ε0,the partial deriva-

tives are known to be infinitesimals and are functions of x and y. The study

expresses them as.

(∂X
∂ε

)ε=ε0 = α(x, y)

(∂Y
∂ε

)ε=ε0 = λ(x, y)

Considering the values of ε tending closer to ε0, the coordinates of the transfor-

mation can be expressed as;

x = x+ µ(x, y)(ε− ε0)

y = y + λ(x, y)(ε− ε0)

such that the terms of second and higher degree in (ε− ε0) have been left out.

Thus this transformation is known as an infinitesimal transformation [7,10].

Definition 1.2.14 Invariance under Transformation

An element or set of elements which does not change when its constituents change

is called an invariant. Its concept has a physical basis in the conservation laws of

mechanics. A function g is known to be invariant under a Lie group if and only if

g(x, y) = g(X(x, y, ε), Y (x, y, ε)) = g(x, y)

such that when expressed in new variables, the function reads the same.

Rotation of a circle about an axis that is normal to its center is a good example

of invariance under a continuous transformation [7].

Definition 1.2.15 Symmetry

An operation which leaves invariant an object which it operates and a transfor-

mation which makes the object unchanged is called symmetry of a geometrical

object. Considering the transformation of infinitesimal form

xi = xi + εαi i = 1, . . . , n

9



where ε represents a parameter of smallness. This equation can be expressed as

xi = (1 + εT )xi

in which

T = αi
∂
∂xi

is a differential operator known as the generator of the transformation.

Regarding a particular case where

T = α ∂
∂x

+ β ∂
∂t

+ λ ∂
∂u

Under the action of the infinitesimal transformation that is generated by T , a

function g(x, t, u) becomes

g(x, t, u) = (1 + εT )g(x, t, u)

= g + ε(α ∂g
∂x

+ β ∂g
∂t

+ λ ∂g
∂u

)

If the form of g is unchanged such that

α ∂g
∂x

+ β ∂g
∂t

+ λ ∂g
∂u

= 0

or

g(x, t, u) = g(x, t, u)

then T is known as a symmetry of g. In mathematical terms, all symmetries rep-

resent invariance under transformations. Examples of these symmetries may be

reflections, translations and rotations which are referred generally to as geometric

symmetries. Nonetheless, there are symmetries that may not have such a simple

geometrical interpretation.

1.4 Statement of the Problem

The results of fifth order nonlinear wave equation can be analytic or numerical

when finite difference approach is used whereby the convergence of numerical sys-

tems depend on initial and boundary values given.

Hasibun et al. [14] applied a generalized Riccati equation mapping with the essen-

tial (G′/G)-expansion technique on constructing abundant travelling wave results

in a consistent manner for the fifth-order Sawada-Kotera equation but the results
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were not easily realized since errors could be made when plotting the graphs. In

this study we have solved the fifth order Sawada-Kotera equation of the form

ut+45u2ux+15uxuxx+15uuxxx+uxxxxx = 0 (1.1)

analytically using Lie symmetry analysis. The technique is among the most power-

ful approaches currently used to achieve precise solutions of the partial differential

equations that are nonlinear and the solution is independent of either initial or

boundary values hence is not an approximation to exact solution.

1.5 Objectives of the Study

1.5.1 General Objectives

The general objective was to find the general solution of the Sawada-Kotera equa-

tion, (1.1) using Lie symmetry analysis.

1.5.2 Specific Objectives

The specific objectives were to:

(i) Find the extensions of the generator and the total derivatives of the parameters

in Sawada-Kotera equation.

(ii) Find the infinitesimal generators and the groups in which Sawada-Kotera

equation admits.

(iii) Generate invariant and exact solutions of Sawada-Kotera equation.

(iv) Obtain symmetry solutions of Sawada-Kotera equation.

1.6 Significance of the Study

Nonlinear differential equations play a very significant function in the study of

physical phenomena such as fluid flow and electromagnetics. Sawada-Kotera equa-
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tion is widely used to model applications such as navigation, mechanical waves,

sound waves, light waves and water waves.

The solutions of this study proof that Lie symmetry analysis is an alternative

method of solving the fifth order nonlinear wave equation and attempts can be

made to solve similar equations using this method. The study is the main contri-

bution to knowledge and further research.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

This study presented some results of the previous related research done by some

scholars.

Studies of PDEs and ODEs have been done by many scholars with the aim of

finding their exact solutions. Since the problems of differential equations are

encountered in both scientific, engineering and mathematical world, getting their

exact solutions is quite essential. Applications of several methods and approaches

have been done even though the results are not exhaustive.

2.2 Sawada-Kotera Equation

Hui et al. [16] developed nonlinear superposition formula used to construct Dar-

boux and Backlund transformations for super symmetric Sawada-Kotera equation.

Hui constructed periodic wave solutions using Hirota bilinear method basing on

the Riemann theta function given by Fourier series representation of KdV-Sawada-

Kotera equation.

Inc et al. [17] obtained many accurate and estimate solutions of fractional or-

der Sawada-Kotera equation. They applied shifted modified Chebyshev wavelet

technique and expansion method whereby such solutions were found through ex-

ponential, rational, trigonometric and hyperbolic functions. The procedure was

reinforced by numerical data and graphical representation.

Inc et al. [17] used Hirota bilinear method and the ansatz approach to con-

struct soliton solutions for Sawada-Kotera equation to obtain topological and non-

topological and multi-soliton solutions. The obtained solutions enabled them to
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plot 2-D and 3-D figures using Mathematica 9.

Xiazhi et al. [38] derived nonlocal symmetries of the residual symmetry and spec-

tral function symmetry of Sawada-Kotera equation from the truncated Painleve

expansion method and Lax pair method. By localizing the nonlocal symmetries

of the original system to the prolonged systems of local ones, transformations of

Darboux and Backlund are obtained.

Olaniyi [26] considered time-fractional forms of the Sawada-Kotera equation and

the Ito equation by calculating the approximate solutions in the form of series

obtained by means q-Homotopy Analysis Method (q-HAM). Analytical methods

were compared with with Modified Adomian decomposition method (MADM), ho-

motopy perturbation method (HPM) due to the presence of fraction-factor. The

estimated results were compared with the precise results. Numerical solutions

were then obtained using Mathematica 8.

He and Geng [15] derived a sequential order of the new nonlinear evolution equa-

tions of the Sawada-Kotera equation where they introduced a 3×3 matrix spectral

problem having two potentials. This was done with the help of lax pairs. They

were also able to construct endless sequences of the conserved quantities of evolu-

tion equations.

Sh. Sadigh [35] solved Sawada-Kotera equation by means of the Adomian’s de-

composition technique. The other methods used were variational iteration and

homotopy perturbation. He also applied the modified processes of the techniques

used. The estimate results of the Sawada-Kotera equation was solved in the form

of sequence whereby its components were calculated using recursive relation. The

convergence of the proposed methods and the presence and distinctiveness of the

results were verified. He studied a numerical model to determine the exactness of

the used procedures.

Abdul-Majid [1] obtained multiple singular solutions for the Sawada-Kotera equa-

tion using the simple form of Hirota’s bilinear method.

Dai and Liu [8] used Hirota bilinear method to solve the fifth order Sawada-Kotera
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equation in which the results showed the existence of various solutions of the equa-

tion which could be classified as one-soliton, periodic two-soliton and also singular

periodic soliton solutions. These solutions gave the exact soliton solutions of the

equation.

W.L and Yu-Kun [37] solved the Caudrey-Dodd-Gibbon-Sawada-Kotera equation

by introducing a λ - modified equation. They used invariance property for the

equation under crum transformation to derive a new Backlund transformation.

2.3 Time Fractional Partial Differential Equation

Khongorzul et al. [21] used Lie symmetry analysis in the study of time fractional

partial differential equations which are termed to be nonlinear evolution systems

where a classification of group invariant, infinitesimal symmetries, a complete

group classification and the solutions were obtained. This was done by dividing it

into two cases based on the function contained. Infinitesimal symmetries generated

the dimension whereby in each case was greater than two hence presentation of

the arrangements and one-dimensional optimal systems of the Lie algebras. They

further obtained the reduced schemes equivalent to optimal systems and explicit

set invariant results for each case.

Manoj and Karanjeet [23] presented Lie point symmetries to solve time-fractional

Burgers’ equation. The symmetries were used to transform the equation into

an ordinary differential equation of fractional order which corresponded to the

Erdelyi-Kober fractional derivative. An invariant subspace method was then used

to provide an analytic solution.

Youwei [40] considered two classes of the general time-fractional Korteweg-de Vries

equations (KdVs) where an orderly analysis to develop Lie point symmetries of the

models were obtainable and comparison was done. This was done by transform-

ing both equations to form a nonlinear ordinary differential equation consisting of

different independent variable. A derivative that is equivalent to time-fractional
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in the condensed technique was called the Erdelyi-Kober fractional derivative.

Gang et al. [12] used the Lie group analysis technique to find the invariance proper-

ties of the time fractional fifth-order KdV equation. They performed a procedural

study for deriving Lie point symmetries of time fractional fifth-order KdV equa-

tion. They obtained reductions in symmetry and the vector fields of the fractional

fifth-order KdV equation by means of point symmetry. They therefore provided

some exact solutions using sub-equation method.

2.4 Linearized Differential Equation

Zablon and Sogomo [41] studied how to solve differential equations by symmetry

groups for first order ODEs by exploring the possibility of averting the assump-

tions in applications of Lie groups to differential equation. They found out that

solving the original ODE was much easier than getting the solutions of the lin-

earized symmetry condition (the symbols ξ and η ). By inspired presumption,

or geometric perception, it was possible to determine a particular solution of the

linearized symmetry condition which permitted the integration of the original

equation. Solving differential equations involved some guesses and assumptions of

the form of symmetry for a given differential equation using Lie group symmetry.

2.5 Nonlinear Helmholtz Equation

Sakkaravathi et al. [34] considered the nonlinear Helmholtz (NLH) equation where

they described the beam transmission in a planar waveguide with Kerr-like non-

linearity considering the non-paraxial estimation. Using the optimal systems of

one-dimensional sub algebras, they determined the Lie point symmetries of ordi-

nary differential equations (ODEs) and their equivalent symmetry reductions by

applying the Lie symmetry analysis. Their analysis revealed significant informa-

tion that even if the original equation was non-integrable, its symmetry reductions
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were Painleve integrable. They analytically studied the solution sets of nonlinear

ODEs by getting explicit travelling wave solutions that included single and sym-

biotic single wave solutions by constructing the integrals of motion by means of

the adapted Prelle-Singer technique and also by carrying out an exhaustive nu-

merical study of the reduced equations with the aim of obtaining multi-peak non-

linear wave trains. They did compare the symmetries in the standard nonlinear

Schrodinger equation and that of the equation being studied whose symmetries

were since existing in the literature.

2.6 Nonlinear Wave Equation

Islam et al. [18] implemented the exp(−∅(ξ))-expansion technique in construct-

ing the precise traveling wave results for nonlinear evolution equations (NLEEs).

They considered two model equations which played important function in non-

linear sciences, which are known to be the time regularized long wave (TRLW)

equation and the Korteweg-de Vries (KdV) equation. They found trigonometric,

rational, hyperbolic and also exponential explicit function solutions of the vari-

ables in the chosen equations. They realized that the used technique was quite

effective and was virtually suitable for the aforesaid problems and subsequently

for the other NLEEs which arises in engineering fields and those arising in math-

ematical physics.

Aminer [2] used Lie symmetry analysis technique to obtain the exact results of the

fourth order nonlinear ordinary differential equation which was a one-dimensional

wave equation. The approach was efficient because the results did not rely on

both boundary and initial conditions and was not an approximation to the exact

solution. Therefore, the study employed a systematic process of developing vari-

ational symmetries, infinitesimal transformations, generators, integrating factors,

prolongations (extended transformations), adjoint-symmetries and the invariant

transformations of the model in question. The method was meant to lower the
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order of the model from fourth to first order, and was then calculated to obtain

the Lie symmetry result.

Bluman and Anco [5] obtained adjoint symmetries for the wave equation but they

did not attain much since the variational symmetries and also true symmetries

were not identified. They found all the integrating factors and their equivalent

first integrals for any given scheme of ODEs. The obtained integrating factors

were revealed to be all the results of both the adjoint scheme of the linearized

scheme of ODEs and also a scheme that represented additional adjoint invariance

conditions.

Fritz [11] dealt with Lie’s theory for solving second-order quasilinear differential

equations based on its symmetries applied for designing solution algorithms. He

supplemented the Lie’s original theory by different results that had been obtained

after his death one hundred years ago. This was right above all of Janet’s the-

ory [19] for schemes of linear partial differential equations and of Loewy’s theory

[22] for decomposing linear differential equations into components of lowest order.

The outcome allowed the formulation of the similarity problems that the were

associated with Lie symmetries and mainly, determination of the function field in

which the transformation functions act was considered as part of the problem.The

equation that initially had to be solved determined the base field, i.e. the smallest

field containing its coefficients. The fields that occurred later on in the solution

process were extensions of the base field and were determined clearly. The study

showed that a symmetric equation could be solved in closed form algorithmically

by transforming into a canonical form equivalent to its symmetry type by Liouvil-

lian transformation basing on the base field thus describing a solution algorithm.

Computer algebra software on top of the type system ALL TYPES availed so as

to make it easier to apply these algorithms to existing problems.
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2.7 Nonlinear Beam Equation

Dingjiang et al. [9] studied a generalized nonlinear beam equation which were of

second-order wave terms and fourth-order wave terms, that was prolonged from

the classical beam equation occurring in the past procedures of travelling wave

manner in the Golden Gate Bridge in San Francisco using Lie symmetry analy-

sis. They used the equivalence transformation group theory to carry out a total

Lie symmetry group categorization. They separated out from the classification

solutions the investigated Lie symmetry reduction of a nonlinear beam-like model

thus by ways of the reductions and representative calculation, some classes of pre-

cise solutions, as well as single wave results, triangular sporadic wave results and

normal results of the nonlinear beam-like equations were composed.

2.8 Nonlinear ODEs

Oliveri [27] presented Lie symmetry analysis of differential equations which pro-

vided a strong and essential outline to the utilization of orderly methods that

leads to integrating by quadrature (or at least to lowering the order) of ordinary

differential equations, to the obtaining of constant results of problems containing

initial and boundary values, to the deduction of conservation laws, to the creation

of associations among diverse differential equations that could be equal. Review of

some familiar solutions of Lie group analysis, including the current contributions

concerned with the conversion of differential equations to corresponding systems

that are important to study related problems was done.

George and Gregory [13] presented a theory for determining new symmetries for

ODEs which lead to an orderly reduction of the order of a differential equation.

They used a Backlund transformation to work out the Lie symmetries of a differ-

ential equation thus inducing different symmetries of the known equation which

were neither of contact, Lie nor of Lie- Backlund form. They obtained new sym-
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metries and the equivalent new critical outcomes for a set of ordinary differential

equations occurring from nonlinear diffusion.

2.9 Nonlinear PDEs

Roman et al. [33] reviewed on finding a precise results of a set of reaction-diffusion-

convection equations consisting of exponential nonlinearities and through these

technique they the were able to look for Lie and Q-conditional also called non-

classical symmetries. They used two different algorithms to derive a total Lie

symmetry arrangement of the class so as to illustrate that the solution depended

basically on the type of correspondence transformations that are useful for the ar-

rangement. They also presented a total explanation of Q-conditional symmetries

for PDEs. It was revealed that all the renowned solutions for the equations with

exponential nonlinearities followed as exact cases from the solutions resulting for

the class of similar equations. They constructed accurate results of the related

equations by obtaining the symmetries that were then compared with those that

were established by means of different techniques and eventually presented the use

of the exact results for finding the solutions of boundary-value problems obtained

in population dynamics.

Roman and Maksym [32] studied a simplified Keller–Segel model by applying Lie

symmetry technique. They illustrated that a (1 + 2)-dimensional Keller–Segel

form scheme, jointly including the rightly-specified boundary and initial values

was invariant with regards to infinite-dimensional Lie algebras. They presented

Lie symmetry arrangement of the Cauchy scheme which depended on the initial

and boundary condition which were then used in reducing the order of the problem

to obtain a (1 + 1)-dimensional scheme. They further, verified that the Cauchy

method for the (1 + 1)-dimensional simplified scheme could be linearized then

answered in an explicit form by constructing accurate results of various (1 + 1)-

dimensional problems. They also established, motivated restrictions and derived
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Lie symmetry categorization of the (1 + 2)-dimensional Neumann scheme for the

simplified Keller–Segel system so as to get a single solution. Since Lie symmetry

of boundary-value model depend basically on geometry of the area, which the

problem was formulate for, they examined the realistic domains. Reduction of the

Neumann scheme on a band was determined by means of the symmetries obtained

so as to find an accurate result of a nonlinear two-dimensional Neumann system

on a set period.

Andronikos et al. [4] analyzed two sets of (1+2)(1+2) evolution equations that

were of particular concern in Financial Mathematics, such as the model for the

Two-factor Commodities schemes and the Two-dimensional Black-Scholes model

using Lie Symmetry Analysis. They studied problems for the case that were

independent and those whose parameters of the equation were indefinite func-

tion of time. Thus in the independent Black-Scholes Equation, they established

that their symmetry was maximal hence the equation could be reduced to the

(1+2)(1+2)Classical Heat Equation. It was different in the example for the de-

pendent equation whereby the amount of symmetries was submaximal. Consider-

ing the two-factor equation, it was found out that the quantity of symmetries was

submaximal in independent and also in dependent situations. When the resulting

symmetries were applied to reduce the order of each of the schemes to obtain a

(1+1)(1+1) equation, the resultant scheme was of greatest symmetry and hence

equal to the (1+2)(1+2) Classical Heat Equation.

Roman and John [31] proposed an innovative description of restricted invariance

for boundary value schemes which involved an extensive series of boundary condi-

tions. It was revealed that further descriptions were workable in finding Lie sym-

metries of boundary value schemes through normal boundary conditions which

followed a specific examples from definitions. They established that the study was

applicable to the nonlinear problems since they were able to solve simple examples

that were arising in systems. They realized a thriving use of the description for

the Lie and restricted symmetry arrangement of a set of nonlinear boundary value
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schemes that were of (1 + 2)-dimension which were administered by the nonlin-

ear diffusion model in a semi-infinite field. When the scheme in question with

non-diasppearing change on the boundary admitted extra Lie symmetry mecha-

nisms linked to when k 6= −2, it was established that there was a unique model,

k 6= −2, for the power diffusivity uk thus were useful in reducing the nonlinear sys-

tems with power diffusivity uk and an unvarying non-zero change on the boundary

which was ordinary in uses and described an extensive series of phenomenon to

(1 + 1)-dimensional systems so as to reveal the applicability of the resulting sym-

metries. After analyzing structures and properties of the problems obtained, they

presented a number of solutions representing how Lie invariance of the boundary

value scheme in the study depended on the geometry of the field.

Aminus [3] considered Laplace equation on surfaces of revolution and discussed the

symmetry algebra based on classical Lie symmetry theory. Symmetry reductions

were applied in order to obtain new harmonic functions on surfaces of revolution

using the Lie point symmetries.

Juan et al. [20] found explicit results of nonlinear Schrodinger equations that have

spatially inhomogeneous nonlinearities by means of Lie group theory and also

canonical transformation. They presented the general theory, thus used it to solve

diverse models and used the qualitative theory of vibrant schemes to find various

properties of those results.

Popovych [30] discussed the reduction operators of the linear parabolic partial

differential equations and provided theoretical results on some transformation and

reductions for determining equations. His main result was a series of ‘no-go’ the-

orems concerning symmetries that did not lead to new reductions.

Oduor [25] solved Burgers equation,ut − uux = λux which is a non-linear PDE

arising from model study of turbulence and shock wave theory. He determined all

the Lie groups admitted by Burgers equation and used symmetry transformations

to establish all the global solutions corresponding to each Lie group admitted by

the equation.
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Nucci et al. [24] used role of symmetries to solve differential equations, hence show-

ing the solutions on the use of classical lie point symmetries in solving equations

involving epidemiology of nutrition and meteorology. The iteration of the scheme

yielded new non-linear equations that inherited the lie symmetry algebra of the

specified system. The invariant results of the non-linear equations formed gave

new results of the initial equation.

Omolo [29] used lie symmetry analysis of differential equations in solving nonlinear

differential equations. He gave a stability approach to exact solutions of non-linear

PDEs provided by the symmetry groups.

Despite the fact that so many scholars did much work in Sawada-Kotera equa-

tion, the solutions obtained were approximate to the exact solutions. To fill the

gap, Lie Symmetry analysis provided exact symmetry solutions of Sawada-Kotera

equation.
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CHAPTER THREE

METHODOLOGY

3.1 Introduction

This chapter precisely illustrate the techniques and procedures that were applied

in solving equation (1.1).

3.2 Groups of Transformation and Infinitesimal Transfor-

mations

The study generated infinitesimal generators, infinitesimal transformations and

the groups in which the equation admitted.

The groups of transformations required were of the form;

x∗ = X(x, t, u; ε) (3.1a)

t∗ = T (x, t, u; ε) (3.1b)

u∗ = U(x, t, u; ε) (3.1c)

and their corresponding infinitesimal transformations α, β, λ in which

α(x, t, u) = ∂X(x,t,u;ε)
∂x

|ε=0 (3.2a)

β(x, t, u) = ∂T (x,t,u;ε)
∂t

|ε=0 (3.2b)

λ(x, t, u) = ∂U(x,t,u;ε)
∂u

|ε=0 (3.2c)

3.3 Using Lie’s Integrating Factor

The study uses the solutions of adjoint symmetries of the linearized PDE which act

as integrating factor by applying theorems that show the link between infinitesimal

symmetries and integrating factors. Such theorems are stated as follows:
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Theorem 3.1

Consider a first order differential equation represented in the form of symmetry as

Q(x, y)dx+R(x, y)dy = 0 (3.3)

Lie showed that (3.3) admits a one- parameter group P with the infinitesimal gen-

erator expressed as

G = β(x, y) ∂
∂x

+λ(x, y) ∂
∂y

(3.4)

where β and λ are functions of x and y only.

Thus equation (3.4) is a symmetry for equation (3.3) and

β = (βQ+λR)−1 (3.5)

is called Lie’s integrating factor for equation (3.3) provided that

βQ+ λR 6= 0

Example 3.1

Considering the Riccati equation of the form

y
′
+ y2 − 2

x2
= 0

We re-write it in the form of equation (3.1) to obtain

dy + (y2 − 2
x2

)dx

Substituting β = x, y = −y,Q = y2 − 2
x2

and R = 1 we obtain the integrating

factor

φ = x
x2y2−xy−2

On multiplying the Riccati equation by this integrating factor we obtain

xdy+(xy2− 2
x
)dx

x2y2−xy−2 = 0

We then re-write in the following form for integration to be done

= xdy+ydx
x2y2−xy−2 + dx

x

= d(lnx+ 1
3
lnxy−2

xy+1
) = 0

and finally we integrate to obtain
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xy−2
xy+1

= k
x3

⇒ x3 xy−2
xy+1

= k

thus to solve for y, we find the solution of the Ricatti equation as

y = 2x3+k
x(x3−k)

where k- constant.

3.4 Invariant Transformation of Differential Equations

The study applied infinitesimal transformations in constructing the solutions of

differential equations.

This was actualized by considering systems of differential equations and showing

the infinitesimal criterion of their invariance.

The results of the algorithm were used to find out the infinitesimal generators

represented by the equation.

According to Olver [28], invariant surfaces of the corresponding Lie group of point

transformations lead to invariant solutions (similarity solutions).The solutions

were obtained by solving partial differential equations with fewer independent

variables than the given PDE.

First, we consider a kth order differential equation of the form

F (x, u, u1, u2, u3, ......, uk) = 0 (3.6)

where x = (x1, x2, x3, ......, xn) denotes n independent variables, uj denotes the set

of coordinates corresponding to all the jth order partial derivatives with respect

to x . We assume that the Partial Differential Equation (3.6) can be written in

solvable form in terms of some kth order partial derivative of u .

F (x, u, u1, u2, u3, ......, uk) = ui1i2i3i4i5....ij−f(x, u, u1, u2, u3, ......, uk) = 0 (3.7)

where f(x, u, u1, u2, u3, ......, uk) does not depend on ui1i2i3i4i5....ij .

We now give a criterion for the invariance of a partial differential equation by

stating the theorem below [6].

26



Theorem 3.2

Let Fa(x, u
(k)) = 0 be a non-degenerate system of differential equations.

Let V = αi(x, u) ∂
∂xi

+λ(x, u) ∂
∂u

be the infinitesimal generator of the one-parameter

Lie group of transformations given as

x∗ = X(x, u; ε) (3.8)

u∗ = U(x, u; ε) (3.9)

and let

V (k) = αi(x, u) ∂
∂xi

+λ(x, u) ∂
∂u

+λ
(1)
i (x, u, u1)

∂
∂u1

+...+λ
(k)
i1i2i3...ik

(x, u, u1, u2, u3, ...uk)

∂
∂ui1i2i3i4i5....ik

(3.10)

be the corresponding kth extended infinitesimal generator where

λ
(l)
i = λ(x, y)

is given by

λ
(l)
i = Diλ− (Diαj)uj, i = 1, 2, 3, ..., n; (3.11)

and λ
(j)
i1i2i3i4i5...ij

is given by

λ
(k)
i1i2i3i4i5...ik

= Dikλ
(k−1)
i1i2i3i4i5...ik−1 − (Dikλj)ui1i2i3i4...ik−1

(3.12)

ij = 1, 2, 3, ..., n for, j = 1, 2, 3, ..., k with k = 1, 2, 3, ... in terms of (α(x, u), λ(x, u)).

Then one-parameter Lie group of transformations (3.8) and (3.9) is admitted by

the partial differential equation (3.6) if and only if

V (k)[Fa(x, u, u1, u2, u3, ..., uk)] = 0, a = 1, 2, 3, ..., l (3.13)

Whenever

F (x, u(k)) = 0

3.5 Lie Point Symmetries

The study describe Lie point symmetry as a point that depends continuously on at

least one parameter since the parameters can vary over a set of nonzero measure.

The Lie point symmetries of PDEs are represented in the form

G = α ∂
∂x

+ β ∂
∂t

+ λ ∂
∂u

(3.14)
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where α, β and λ are functions of x, t and u only.

For us to be able to apply a point transformation on our equation there is need

to know how the derivatives transform in the infinitesimal transformation

x = x+ εα(x, t, u) + 0(ε2)

t = t+ εβ(x, t, u) + 0(ε2)

u = u+ ελ(x, t, u) + 0(ε2) (3.15)

whose generator is known to be

G[0] = α(x, t, u) ∂
∂x

+β(x, t, u) ∂
∂t

+λ(x, t, u) ∂
∂u

(3.16)

We also find the first, second, third, fourth and fifth derivatives of x and t then

find the extensions/prolongations of the generator G.

The prolongations of the generator from the first to the fifth are: [28]

G[1] = G[0]+λt ∂
∂ut

+λx ∂
∂ux

(3.17)

G[2] = G[1]+λtt ∂
∂utt

+λtx ∂
∂utx

+λxx ∂
∂uxx

(3.18)

G[3] = G[2]+λttt ∂
∂uttt

+λttx ∂
∂uttx

+λtxx ∂
∂utxx

+λxxx ∂
∂uxxx

(3.19)

G[4] = G[3]+λtttt ∂
∂utttt

+λtttx ∂
∂utttx

+λttxx ∂
∂uttxx

+λtxxx ∂
∂utxxx

+λxxxx ∂
∂uxxxx

(3.20)

G[5] = G[4] + λttttt ∂
∂uttttt

+ λttttx ∂
∂uttttx

+ λtttxx ∂
∂utttxx

+ λttxxx ∂
∂uttxxx

+ λtxxxx ∂
∂utxxxx

+

λxxxxx ∂
∂uxxxxx

(3.21)

Where the termsλt, λx, λxx, λxxx... are coefficients and are generated and expressed

in terms of partial derivatives as shown below

λx = ∂λ
∂x

+ u
′ ∂λ
∂u
{ from d(λ = ∂λ

∂x
dx+ (∂λ

∂u
)du} hence

Dx(λ) = λx + uxλu : λ(x, t, u) (3.22)

αx = ∂α
∂x

+ u
′ ∂α
∂u
{ from d(α = ∂α

∂x
dx+ (∂α

∂u
)du} hence

Dx(α) = αx + uxαu : α(x, t, u) (3.23)

βx = ∂β
∂x

+ u
′ ∂β
∂u
{ from d(β = ∂β

∂x
dx+ (∂β

∂u
)du} hence

Dx(β) = βx + uxβu : β(x, t, u) (3.24)

λt = ∂λ
∂t

+ u
′ ∂λ
∂u
{ from d(λ = ∂λ

∂t
dt+ (∂λ

∂u
)du} hence

Dt(λ) = λt + utλu) (3.25)

αt = ∂α
∂t

+ u
′ ∂α
∂u
{ from d(α = ∂α

∂t
dt+ (∂α

∂u
)du} hence

Dt(α) = αt + utαu) (3.26)
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βt = ∂β
∂t

+ u
′ ∂β
∂u
{ from d(β = ∂β

∂t
dt+ (∂β

∂u
)du} hence

Dx(β) = βt + utβu (3.27)

λ′′ = d
dx

(∂λ
∂x

+ u′ ∂λ
∂u

) + d
dx

(∂λ
∂x

+ u′ ∂λ
∂u

)u′

= ∂2λ
∂x2

+ u′ ∂
2λ

∂u∂x
+ u′′ ∂λ

∂u
+ u′ ∂

2λ
∂u∂x

+ u′
2 ∂2λ
∂u2

+ 0

= ∂2λ
∂x2

+ 2u′ ∂
2λ

∂u∂x
+ u′

2 ∂2λ
∂u2

+ u′′ ∂λ
∂u

hence

D2
x(λ) = λxx + 2uxλux + uxxλu + u2xλuu (3.28)

α′′ = d
dx

(∂α
∂x

+ u′ ∂α
∂u

) + d
dx

(∂α
∂x

+ u′ ∂α
∂u

)u′

= ∂2α
∂x2

+ u′ ∂
2α

∂u∂x
+ u′′ ∂α

∂u
+ u′ ∂

2α
∂u∂x

+ u′
2 ∂2α
∂u2

+ 0

= ∂2α
∂x2

+ 2u′ ∂
2α

∂u∂x
+ u′

2 ∂2α
∂u2

+ u′′ ∂α
∂u

hence

D2
x(α) = αxx + 2uxαux + uxxαu + u2xαuu (3.29)

β′′ = d
dx

(∂β
∂x

+ u′ ∂β
∂u

) + d
dx

(∂β
∂x

+ u′ ∂β
∂u

)u′

= ∂2β
∂x2

+ u′ ∂
2β

∂u∂x
+ u′′ ∂β

∂u
+ u′ ∂

2β
∂u∂x

+ u′
2 ∂2β
∂u2

+ 0

= ∂2β
∂x2

+ 2u′ ∂
2β

∂u∂x
+ u′

2 ∂2β
∂u2

+ u′′ ∂β
∂u

hence

D2
x(β) = βxx + 2uxβux + uxxβu + u2xβuu (3.30)

λ′′′ = d
dx

(∂
2λ
∂x2

+ 2u′ ∂
2λ

∂u∂x
+ u′

2 ∂2λ
∂u2

+ u′′ ∂λ
∂u

) + u′ d
du

(∂
2λ
∂x2

+ 2u′ ∂
2λ

∂u∂x
+ u′

2 ∂2λ
∂u2

+ u′′ ∂λ
∂u

)

= ∂3λ
∂x3

+ 2u′ ∂
3λ

∂u∂x2
+ 2u′′ ∂

2λ
∂u∂x

+ u′′ ∂
2λ

∂u∂x
+ u′′ ∂

2λ
∂u∂x

+ u′′′ ∂λ
∂u

+ u′2 ∂3λ
∂u2∂x

+ 2u′u′′ ∂
2λ
∂u2

+

u′ ∂
3λ

∂u∂x2
+ 2u′2 ∂3λ

∂u2∂x
+ 0 + u′u′′ ∂

2λ
∂u2

+ 0 + u′3 ∂
3λ
∂u3

+ 0

= ∂3λ
∂x3

+ 3u′ ∂
3λ

∂u∂x2
+ 3u′′ ∂

2λ
∂u∂x

+ u′′′ ∂λ
∂u

+ 3u′2 ∂3λ
∂u2∂x

+ 3u′u′′ ∂
2λ
∂u2

+ u′3 ∂
3λ
∂u3

Hence

D3
xλ = λxxx+3uxλuxx+3uxxλux+uxxxλu+3u2xλuux+3uxuxxλuu+u3xλuuu (3.31)

λ(4) = d
dx

(∂
3λ
∂x3

+ 3u′ ∂
3λ

∂u∂x2
+ 3u′′ ∂

2λ
∂u∂x

+ u′′′ ∂λ
∂u

+ 3u′2 ∂3λ
∂u2∂x

+ 3u′u′′ ∂
2λ
∂u2

+ u′
3 ∂3λ
∂u3

) +

u′ d
du

(∂
3λ
∂x3

+ 3u′ ∂
3λ

∂u∂x2
+ 3u′′ ∂

2λ
∂u∂x

+ u′′′ ∂λ
∂u

+ 3u′2 ∂3λ
∂u2∂x

+ 3u′u′′ ∂
2λ
∂u2

+ u′
3 ∂3λ
∂u3

)

= ∂4λ
∂x4

+3u′ ∂
4λ

∂u∂x3
+3u′′ ∂

3λ
∂u∂x2

+3u′′ ∂
3λ

∂u∂x2
+3u′′′ ∂

2λ
∂u∂x

+u′′′ ∂
2λ

∂u∂x
+u(4) ∂λ

∂u
+3u′2 ∂4λ

∂u2∂x2
+

6u′u′′ ∂
3λ

∂u2∂x
+ 3u′u′′ ∂

3λ
∂u2∂x

+ 3u′u′′′ ∂
2λ
∂u2

+ 3u′′2 ∂
2λ
∂u2

+ u′3 ∂4λ
∂u3∂x

+ 3u′2u′′ ∂
3λ
∂u3

+ u′ ∂
4λ

∂u∂x3
+

3u′2 ∂4λ
∂u2∂x2

+ 3u′u′′ ∂
3λ

∂u2∂x
+ u′u′′′ ∂

2λ
∂u2

+ 3u′3 ∂4λ
∂u3∂x

+ 3u′2u
′′ ∂3λ
∂u3

+u′4 ∂
4λ
∂u4

= ∂4λ
∂x4

+ 4u′ ∂
4λ

∂u∂x3
+ 6u′′ ∂

3λ
∂u∂x2

+ 4u′′′ ∂
2λ

∂u∂x
+ u(4) ∂λ

∂u
+ 3u′2 ∂4λ

∂u2∂x2
+ 9u′u′′ ∂

3λ
∂u2∂x

+

4u′u′′′ ∂
2λ
∂u2

+ 3u′′2 ∂
2λ
∂u2

+ 4u′3 ∂4λ
∂u3∂x

+ 6u′2u′′ ∂
3λ
∂u3

+ 3u′2 ∂4λ
∂u2∂x2

+ 3u′u′′ ∂
3λ

∂u2∂x
+ u′4 ∂

4λ
∂u4

Hence we have

D4
xλ = λxxxx+4uxλuxxx+6uxxλuxx+4uxxxλux+uxxxxλu+6u2xλuuxx+12uxuxxλuuxx+
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3u2xxλuu + 4uxuxxxλuu + 4u3xλuuux + 6u2xuxxλuuu + u4xλuuuu (3.32)

λ(5) = d
dx

[∂
4λ
∂x4

+4u′ ∂
4λ

∂u∂x3
+6u′′ ∂

3λ
∂u∂x2

+4u′′′ ∂
2λ

∂u∂x
+u(4) ∂λ

∂
+6u′2 ∂4λ

∂u2∂x2
+12u′u′′ ∂

3λ
∂u2∂x

)+

3u′′2 ∂
2λ
∂u2

+4u′u′′′ ∂
2λ
∂u2

+4u′3 ∂4λ
∂u3∂x

+6u′2u′′ ∂
3λ
∂u3

+u′4 ∂
4λ
∂u4

]+u′ d
du

[∂
4λ
∂x4

+4u′ ∂
4λ

∂u∂x3
+6u′′ ∂

3λ
∂u∂x2

+

4u′′′ ∂
2λ

∂u∂x
+u(4) ∂λ

∂
+u(4) ∂λ

∂u
+6u′2 ∂4λ

∂u2∂x2
+12u′u′′ ∂

3λ
∂u2∂x

+3u′′2 ∂
2λ
∂u2

+4u′u′′′ ∂
2λ
∂u2

+4u′3 ∂4λ
∂u3∂x

+

6u′2u′′ ∂
3λ
∂u3

] + u′
4 ∂4λ
∂u4

]

= ∂5λ
∂x5

+ 4u′ ∂
5λ

∂u∂x4
+ 4u′′ ∂

4λ
∂u∂x3

+ 6u′′ ∂
4λ

∂u∂x3
+ 6u′′′ ∂

3λ
∂u∂x2

+ 4u′′′ ∂
3λ

∂u∂x2
+ 4u(4) ∂

2λ
∂u∂x

+

u(4) ∂
2λ

∂u∂x
+u(5) ∂λ

∂u
+6u′2 ∂5λ

∂u2∂x3
+12u′u′′ ∂4λ

∂u2∂x2
+12u′u′′ ∂4λ

∂u2∂x2
+12u′′2 ∂3λ

∂u2∂x
+12u′u′′′ ∂3λ

∂u2∂x
+

4u′u′′′ ∂
3λ

∂u2∂x
+4u′′u′′′ ∂

2λ
∂u2

+4u′u(4) ∂
2λ
∂u2

+3u′′2 ∂3λ
∂u2∂x

+6u′′u′′′ ∂
2λ
∂u2

+6u′2u′′ ∂
4λ

∂u3∂x
+12u′u′′2 ∂

3λ
∂u3

+

6u′2u′′′ ∂
3λ
∂u3

+4u′3 ∂5λ
∂u3∂x2

+12u′2u′′ ∂4λ
∂u3∂x

+u′4 ∂5λ
∂u4∂x

+4u′3u′′ ∂
4λ
∂u4

+u′ ∂5λ
∂u2∂x4

+4u′2 ∂5λ
∂u2∂x3

+

6u′u′′ ∂4λ
∂u2∂x2

+ 4u′u′′′ ∂
3λ

∂u2∂x
+ u′u(4) ∂

2λ
∂u2

+ 6u′3 ∂5λ
∂u3∂x2

+ 12u′2u′′ ∂
4λ

∂u3∂x
+ 4u′2u′′′ ∂

3λ
∂u3

+

3u′u′′2 ∂
3λ
∂u3

+ 6u′3u′′ ∂
4λ
∂u4

+ 4u′4 ∂5λ
∂u4∂x

+ u′5 ∂
5λ
∂u5

= ∂5λ
∂x5

+ 5u′ ∂
5λ

∂u∂x4
+ 10u′′ ∂

4λ
∂u∂x3

+ 10u′′′ ∂
3λ

∂u∂x4
+ 5u(4) ∂

2λ
∂u∂x

+ u(5) ∂λ
∂u

+ 10u′2 ∂5λ
∂u2∂x3

+

30u′u′′′ ∂4λ
∂u2∂x2

+15u′′2 ∂3λ
∂u2∂x

+20u′u′′′ ∂
3λ

∂u2∂x
+10u′′u′′′ ∂

2λ
∂u2

+5u′u(4) ∂
4λ
∂u2

+30u′2u′′ ∂
4λ

∂u3∂x
+

15u′u′′2∂
5λ
∂u4

+ 10u′2u′′′ ∂
3λ
∂u3

+ 10u′3 ∂5λ
∂u3∂x2

+ 5u4 ∂5λ
∂u4∂x

+ 10u′3u′′ ∂
4λ
∂u4

+ u′5 ∂
5λ
∂u5

Hence

D5
x(λ) = λxxxxx + 5uxλuxxxx + 10uxxλuxxx + 10uxxxλuxx + 5uxxxxλux + uxxxxxλu +

10ux2λuuxxx+30uxuxxλuuxx+15uxx2λuux+20uxuxxxλuux+10uxxuxxxλuu+5uxuxxxxλuu+

10ux3λuuuxx+30ux2uxxλuuux+15uxuxx2λuuu+10ux2uxxxλuuu+5ux4λuuuux+10ux3uxxλuuuu+

ux5λuuuuu (3.33)

The terms λt, λx, λxx, λxxx and λxxxxx are the coefficients and are generated and

expressed in terms of partial derivatives as shown below

λt = Dtλ− utDtβ − uxDtα

= λt + utλu − utβt − uxαt − uxutαu − u2tβu

= λt + ut(λu − βt)− uxαt − uxutαu − u2tβu (3.34)

λx = Dxλ− uxDxα− utDxβ

= λx + uxλu − uxαx − u2xαu − utβx − uxutβu

= λx + ux(λu − αx)− u2xαu − utβx − uxutβu (3.35)

λtt = D2
t (λ−x −t) + αuxtt + βuttt

= λtt + (2λut− βuu)ut−αttux + (λuu− 2βut)u
2
t − 2αutuxut− βuuu3t −αuuuxu2t +
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(λu − 2βt)utt − 2αtuxt − 3βuututt − 2αuutuxt (3.36)

λxx = D2
xλ − uxD2

xα − utD2
xβ − 2uxxDxα − 2uxtDxβ = λxx + 2uxλux + uxxλu +

u2xλuu−uxαxx−2u2xαux−uxuxxαu−u3xαuu−utβxx−2uxutβux−uxxutβu−u2xutβuu−

2uxxαx − 2uxuxxαu − 2uxtβx − 2uxuxtβu

= λxx +ux(2λux−αxx) +uxx(λu− 2αx) +u2x(λuu− 2αux)− 3uxuxxαu−u3xαuu−

utβxx − 2uxutβux − uxxutβu − u2xutβuu − 2uxtβx − 2uxuxtβu (3.37)

λxxx = D3
xλ− uxD3

xα− utD3
xβ − 3uxxD

2
xα− 3uxtD

2
xβ − 3uxxxDxα− 3uxxtDxβ

= λxxx + 3uxλuxx + 3uxxλux + uxxxλu + 3u2xλuux + 3uxuxxλuu + u3xλuuu − uxαxxx −

3u2xαuxx − 3uxuxxαux − uxuxxxαu − 3u3xαuux − 3u2xuxxαuu − u4xαuuu − utβxxx −

3uxutβuxx−3uxxutβux−uxxxutβu−3u2xutβuux−3uxuxxutβuu−u3xutβuuu−3uxxαuu−

6uxuxxαux− 3u2xxαu− 3u2xuxxαuu− 3uxtβxx− 6uxuxtβux− 3uxxuxtβu− 3u2xuxtβuu−

3uxxxαx − 3uxuxxxαu − 3uxxtβx − 3uxuxxtβu (3.38)

λxxxx = D4
xλ− uxD4

xα− utD4
xβ − 4uxxD

3
xα− 4uxtD

3
xβ − 4uxxxD

2
xα− 4uxxtD

2
xβ −

4uxxxxDxα− 4uxxxtDxβ

= λxxxx+ux(4λuxxx−αxxxx)+uxx(6λuxx−4αxxx)+uxxx(4λux−4αxx)+uxxxx(λu−

4αx)+u
2
x(6λuuxx−4αuxxx)+uxuxx(12λuux−18αuxx)+u

2
xx(3λuu−12αux)+uxuxxx(4λuu−

12αux) + u3x(4λuuux − 6αuuxx) + u2xuxx(6λuuu − 24αuux) + u4x(λuuuu − 4αuuux) −

5uxuxxxxαu − 15uxu
2
xxαuu − 8u2xuxxxαuu − 10u3xuxxαuuu − u5xαuuuu − 8uxxuxxxαu −

utβxxxx−4uxutβuxxx−6uxxutβuxx−4uxxxutβux−uxxxxutβu−6u2xutβuuxx−12uxuxxutβuux−

3u2xxutβuu − 4uxuxxxutβuu − 4u3xutβuuux − 6u2xuxxutβuuu − u4xutβuuuu − 4uxtβxxx −

12uxuxtβuxx−12uxxuxtβux−4uxxxuxtβu−12u2xuxtβuux−12uxuxxuxtβuu−4u3xuxtβuuu−

4uxxtβxx − 8uxuxxtβux − 4uxxuxxtβu − 4u2xuxxtβuu − 4uxxxtβx − 4uxuxxxtβu (3.39)

λxxxxx = D5
xλ− uxD5

xα− utD5
xβ − 5uxxD

4
xα− 5uxtD

4
xβ − 5uxxxD

3
xα− 5uxxtD

3
xβ −

5uxxxxD
2
xα − 5uxxxtD

2
xβ − 5uxxxxxDxα − 5uxxxxtDxβ = λxxxxx + ux(5λuxxxx −

αxxxxx) + uxx(10λuxxx − 5αxxxx) + uxxx(10λuxx − 5αxxx) + uxxxx(5λux − 5αxx) +

uxxxxx(λu−5αx)+u2x(10λuuxxx−5αuxxxx)+u3x(10λuuuxx−10αuuxxx)+u4x(5λuuuux−

10αuuuxx) + u5x(λuuuuu− 5αuuuux)− u6xαuuuuu + u2xx(15λuux− 30αuxx)− 15u3xxαuu +

uxuxx(30λuuxx − 30αuxxx) + uxuxxx(20λuux − 25αuxx) + uxuxxxx(5λuu − 15αux) −

6uxuxxxxxαu+uxxuxxx(10λuu−35αux)−10uxxuxxxxαu+u2xuxx(30λuuux−60αuuxx)+
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uxu
2
xx(15λuuu − 75αuux) + u2xuxxx(10λuuu − 35αuux) + u3xuxx(10λuuuu − 50αuuux)−

45uxuxxuxxxαuu − 10u2xuxxxxαuu − 45u2xu
2
xxαuuu − 15u3xuxxxαuuu − 15u4xuxxαuuuu −

5u2xxxαu − utβxxxxx − 5uxutβuxxxx − 10uxxutβuxxx − 10uxxxutβuxx − 5uxxxxutβux −

uxxxxxutβu − 10u2xutβuuxxx − 30uxuxxutβuuxx − 15u2xxutβuux − 20uxuxxxutβuux −

10uxxuxxxutβuu−5uxuxxxxutβuu−10u3xutβuuuxx−30u2xuxxutβuuux−15uxu
2
xxutβuuu−

10u2xuxxxutβuuu−5u4xutβuuuux−10u3xuxxutβuuuu−u5xutβuuuuu−5uxtβxxxx−20uxuxtβuxxx−

30uxxuxtβuxx − 20uxxxuxtβux − 5uxxxxuxtβu − 30u2xuxtβuuxx − 60uxuxxuxtβuux −

15u2xxuxtβuu − 20uxuxxxuxtβuu − 20u3xuxtβuuux − 30u2xuxxuxtβuuu − 5u4xuxtβuuuu −

5uxxtβxxx−5uxuxxtβuxx−15uxxuxxtβux−5uxxxuxxtβu−15u2xuxxtβuux−15uxuxxuxxtβuu−

5u3xuxxtβuuu− 5uxxxtβxx− 10uxuxxxtβux− 5uxxuxxxtβu− 5u2xuxxxtβuu− 5uxxxxtβx−

5uxuxxxxtβu (3.40)

Symmetry for third order Partial Differential Equation

In order to find the symmetries of the following nonlinear third order PDE

ut + uxxx + uux = 0 (3.41)

We need to find its infinitesimal transformations, infinitesimal generators and all

the groups in which it admits.

This system of equation arises in the theory of long waves in shallow water and

other physical systems.

The necessary symmetry groups of transformations are of the form

x∗ = X(x, t, u; ε), t∗ = T (x, t, u; ε), u∗ = U(x, t, u; ε) (3.42)

with equivalent infinitesimals

α(x, t, u) = ∂X(x,t,u;ε)
∂ε

|ε=0, β(x, t, u) = ∂X(x,t,u;ε)
∂ε

|ε=0, λ(x, t, u) = ∂X(x,t,u;ε)
∂ε

|ε=0

We then let the generator G, of (3.41) be of the form

G = α(x, t, u) ∂
∂x

+ β(x, t, u) ∂
∂t

+ λ(x, t, u) ∂
∂u

(3.43)

We work out all the coefficient functions α, β, λ so that the equivalent one-parameter

Lie group of transformations x∗ = X(x, t, u; ε), t∗ = T (x, t, u; ε), u∗ = U(x, t, u; ε)

form a symmetry group of (3.41).

Since the equation is a third order differential equation, we use the third extension

(prolongation)

32



G[3] = α(x, t, u) ∂
∂x

+ β(x, t, u) ∂
∂t

+ λ(x, t, u) ∂
∂u

+ λt ∂
∂ut

+ λx ∂
∂ux

+ λtt ∂
∂utt

λtx ∂
∂utx

+

λxx ∂
∂uxx

+ λttt ∂
∂uttt

+ λttx ∂
∂uttx

+ λtxx ∂
∂utxx

+ λxxx ∂
∂uxxx

When G[3] acts on the differential equation (3.41), we obtain

G[3][ut + uxxx + uux] = 0 (3.44)

Equation (3.44) becomes

α(x, t, u) ∂
∂x

+β(x, t, u) ∂
∂t

+λ(x, t, u) ∂
∂u

+λt ∂
∂ut

+λx ∂
∂ux

+λtx ∂
∂utx

+λxx ∂
∂uxx

+λttt ∂
∂uttt

+

λttx ∂
∂uttx

+ λtxx ∂
∂utxx

+ λxxx ∂
∂uxxx

][ut + uxxx + uux] = 0 (3.45)

This can further be simplified to give

α(x, t, u) ∂
∂x

[ut + uxxx + uux] + β(x, t, u) ∂
∂t

[ut + uxxx + uux] + λ(x, t, u) ∂
∂u

+ [ut +

uxxx + uux] + λt ∂
∂ut

[ut + uxxx + uux] + λx ∂
∂ux

[ut + uxxx + uux] + λtx ∂
∂utx

[ut + uxxx +

uux] + λxx ∂
∂uxx

[ut + uxxx + uux] + λttt ∂
∂uttt

[ut + uxxx + uux] + λttx ∂
∂uttx

[ut + uxxx +

uux] + λtxx ∂
∂utxx

[ut + uxxx + uux] + λxxx ∂
∂uxxx

= 0 (3.46)

Then we differentiate partially with respect to the partial variables ut, ux, utt, utx, uxx,

uttt, uttx, utxx, uxxx and x, t, u as algebraic variables.

Which yield the infinitesimal of the form

λux + λxu+ λt + λxxx (3.47)

which must be satisfied ensuring that ut = −uxxx−uux whenever it appears in the

equation. When (3.34), (3.35) and (3.38) are substituted into (3.47) we obtain:

λt−αtux+ (λu−βt)ut−αuuxut−βuu2t +uxλ+u[λx−βxut+ (λu−αa)ux−αuu2x−

βuutux] + λxxx + 3uxλuxx + 3u2xλuux + 3uxxλux + u3xλuuu + 3uxuxxλuu + uxxxλu −

3ut(βxxx+3uxβuxx+3u2xβuux+3uxxβux+3uxuxxβuu+u3xβuuu+uxxxβu)−3ux(αxxx+

3uxαuxx+3u2xαuux+3uxxαux+3uxuxxαuu+u3xαuuu+uxxxαu)−3uxx(αxx+2uxαux+

uxxαu+u2xαuu)−3uxt(βxx+2uxβux+uxxβu+u2xβuu)−3uxxx(αx+uxαu)−3uxxt(βx+

uxβu)+λt−αtux(λuβt)ut−αuuxut−βuu2t − [λxx+(2λxu−αxx)ux−βxxut+(λuu−

2αxu)u
2
x − 2βxuuxut − αuuu

3
x − βuuu

2
xut + (λu − 2αx)uxx − 2βxuxt − 3αuuxuxx −

βuutuxx − 2βuuxuxt] = 0 (3.48)

When we replace ut by −uxx−uux whenever it occurs in the equation, and equat-

ing the coefficients of the various monomials in the first, second and third order

partial derivatives of u, we obtain the resulting determining equations for the in-
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finitesimals for the equation (3.41) to be

Table 3.1: Determining Equations for Third Order PDE; Equation

(3.41)

Monomials Equations Equation number

uxxt βx + uxβu = 0 (i)

u2xxx βu = 0 (ii)

u2xx −3αu = 0 (iii)

uxuxxt βu = 0 (iv)

uxuxxx αu = 0 (v)

uxx 3αxx = 3λux (vi)

uxuxx αu + 3λuu − 15αux = 0 (vii)

u2x 3λuux = 0 (viii)

ux λ− αt + (λu − αx)u+ 3λuux = 0 (ix)

1 λxxx + uλxλt = 0 (x)

Results of equations (i)-(x) produce the infinitesimals α, β, λ as given

below

α = c1 + c3t+ c4x (3.49a)

β = c2 + 3c4t (3.49b)

λ = c3 + (−2c4u) (3.49c)

We write α, β, λ in the standard basis form as follows

α = 1.c1 + 0.c2 + t.c3 + 1.c4x = c1 + c3t+ c4x

β = 0.c1 + 1.c2 + 0.c3 + 3.c4t = c2 + 3c4t

λ = 0.c1+0.c2+1.c3−2.c4.u = c3+(−2c4u) (3.50)

We then formulate the equivalent Lie algebra of the basis generators v1, v2, v3, v4

in (3.50) of the form

v1 = αi
∂
∂x

+ βi
∂
∂t

+ λi
∂
∂u

: α, β, λ are the coefficients ci in the standard solutions of

α, β, λ. Thus the vi; i = 1, 2, 3, 4 are obtained from the presentation in equation
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(3.50) as given below

v1 = ∂
∂x
, v2 = ∂

∂t
, v3 = ∂

∂u
+ t ∂

∂x
, v4 = x ∂

∂x
+ 3t ∂

∂t
− 2u ∂

∂u
(3.51)

The Lie groups admitted by equation (3.41) are determined by solving the corre-

sponding Lie equations which yield groups as shown below

v1 = ∂
∂x

;G1 : X(x, t, u; ε)→ X1(x+ε, t, u) (3.52a)

v2 = ∂
∂t

;G2 : X(x, t, u; ε)→ X2(x, t+ε, u) (3.52b)

v3 = ∂
∂u

+ t ∂
∂x

;G3 : X(x, t, u; ε)→ X3(x+ εt, t, u+ ε) (3.52c)

v4 = x ∂
∂x

+ 3t ∂
∂t
− 2u ∂

∂u
;G4 : X(x, t, u; ε)→ X4(e

εx, e3εt, e−2εu) (3.52d)

Lie symmetry analysis for Boussinesq Equation

The Boussinesq equation is a fourth order nonlinear partial differentiation equa-

tion written as

∂2u
∂t2

= α∂
2u
∂x2

+ β ∂
4u
∂x4

+ d ∂2

∂x2
(u2) (3.53)

where α, β, λ non zero- real parameters.

We determine its infinitesimal transformations, infinitesimal generators and all the

groups it admits. The required groups of transformations are of the form:

x∗ = X(x, t, u; ε), t∗ = T (x, t, u; ε), u∗ = U(x, t, u; ε) (3.54)

with conforming infinitesimal transformations α, β, λ where;

α(x, t, u) = ∂X(x,t,u;ε)
∂x

|ε = 0,

β(x, t, u) = ∂T (x,t,u;ε)
∂t

|ε = 0,

λ(x, t, u) = ∂U(x,t,u;ε)
∂u

|ε = 0,

The infinitesimal generator of (3.53) is given by

G = α(x, t, u) ∂
∂x

+ β(x, t, u) ∂
∂t

+ λ(x, t, u) ∂
∂t

(3.55)

with first, second, third and fourth extended/prolonged generators respectively as

G(1) = G+ λt(x, t, u, ut, ux)
∂
∂ut

+ λx(x, t, u, ut, ux)
∂
∂ux

G(2) = G(1)+λtt(x, t, u, ut, ux, utt, utx, uxx)
∂

∂utt
+λtx(x, t, u, ut, ux, utt, utx, uxx)

∂
∂utx

+

λxx(x, t, u, ut, ux, utt, utx, uxx)
∂

∂uxx

G(3) = G(2) + λttt ∂
∂uttt

+ λttx ∂
∂uttx

+ λtxx ∂
∂utxx

+ λxxx ∂
∂uxxx

G(4) = G(3) + λtttt ∂
∂utttt

+ λtttx ∂
∂utttx

+ λttxx ∂
∂uttxx

+ λtxxx ∂
∂utxxx

+ λxxxx ∂
∂uxxxx

where λt, λx, λtx, λxx are known functions of the derivatives of α, β, λ and variables
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ut, ux, utt, utx, uxx in which the subscripts denote partial differentiation

From (3.53), V = (utt − αuxx − βuxxxx)− 2d(u2x + uuxx) = 0

By theorem 3.2, we have

G(4)V = G(4)[(utt − αuxx − βuxxxx)− 2d(u2x + uuxx)] = 0

Thus we express this to obtain

[α ∂
∂x

+β ∂
∂t

+λ ∂
∂u

+λt ∂
∂ut

+λx ∂
∂ux

+λtt ∂
∂utt

+λtx ∂
∂utx

+λxx ∂
∂uxx

+λttt ∂
∂uttt

+λttx ∂
∂uttx

+

λtxx ∂
∂utxx

+λxxx ∂
∂uxxx

+λtttt ∂
∂utttt

+λtttx ∂
∂utttx

+λttxx ∂
∂uttxx

+λtxxx ∂
∂utxxx

+λxxxx ∂
∂uxxxx

]×

[(utt − αuxx − βxxxx)− 2λ(u2x + uuxx)] = 0 (3.56)

The infinitesimal condition (3.56) reduces to equation,

λtt − 2dλuxx − 4duxλ
x − (α + 2du)λxx − βλxxxx = 0 (3.57)

with λtt, λx, λxx, λxxxx defined explicitly as before

Substituting equations (3.35), (3.36), (3.37) and (3.39) into equation (3.57), we

obtain the equation of the form

[λtt + (2λut−βuu)ut−αttux + (2λut−βuu)u2t − 2αutuxut−βuuu3t −αuuuxu2t + (λu−

2βt)utt−2αtuxt−3αuuxutt−αuuxutt−2αuuxuxt−2dλuxx−4dux{x−βxtut+ (λu−

αx)ux−αuu2x−βuutux} −(α+ 2du)[λxx + (2λxuαxx)ux−βxxut + (λuu− 2αxu)u
2
x−

2βxuuxut − αuuu
3
x − βuuu

2
xut + (λu − 2αx)uxx − 2βxuxt − 3αuuxuxx − βuutuxx −

2βuuxuxt] − β[−4uxxx{αx + uxαu} − 4uxxxt{βx + uxβu} − 4uxxx{αxx + 2uxαux +

uxxαu + u2xαuu} − 4uxxt{βxx + 2uxβux + uxxβu + u2xβuu} − 4uxt{βxxx + 3uxβuxx +

3u2xβuux+3uxxβux+3uxuxxβuu+u3xβuuu+uxxxβux}−4uxx(αxxx+3uxαuxx+3u2xαuux+

3uxxαux+3uxuxxαuu+u3xαuuu+uxxxαu)+{λxxxx+uxλuxxx+3(uxxλuxx+uxλxuux+

u2xλuuxx)+3(2uxuxxλuux+u2xλxuux+u3xλuuux)+(3u2xuxxλuuu+u3xλxuuu+u4xλuuuu)+

(uxxxxλu + uxxxλxu + uxuxxxλuu) + 3(uxxxλux + uxxλxux + uxuxxλuux) + 3((u3xx +

uxuxx)λuu+uxuxxλxuu+u2xuxxλuuu)}−ut{βxxxx+uxβuxxx+3(uxxβuxx+uxβxuux+

u2xβuuxx)+3(2uxuxxβxuux+u3xβuuux)+(3u2xuxxβuuu+u3xβxuuu+u4xβuuuu)+(uxxxxβu+

uxxxβxu + uxuxxxβuu) + 3(uxxxβux + uxxβxux + uxuxxβuuuu + 3((u3xx + uxuxxβuu +

uxuxxβxuu +u2xuxxβuuu)}−ux{αxxxx +uxαuxxx + 3(uxxαuxx +uxαxuux +u2xαuuxx) +

3(2uxuxxαxuux+u3xαuuux)+(3u2xuxxαuuu+u3xαxuuu+u4xαuuuu)+(uxxxxαu+uxxxαxu+

uxuxxxαuu) + 3(uxxxαux+uxxαxux+uxuxxαuuuu+ 3((u3xx+uxuxxαuu+uxuxxαxuu+
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u2xuxxαuuu)} − 4uxt(βxxx + 3uxβuxx + 3u2xβuux + 3uxxβux + 3uxuxxβuu + u3xβuuu +

uxxxβu)−4uxx(αxxx+3uxαuxx+3u2xuux+3uxxαux+3uxuxxαuu+u3xαuuu+uxxxαu)]] =

0 (3.58)

whenever (utt − αuxx − βuxxxx) = 2d(u2x + uuxx

When we equate to zero the coefficients of the monomial terms, we obtain equa-

tions in the partial derivatives of infinitesimals α, β, λ which yield:

α = m2 +m3x (3.59)

β = m1 + 2m3t (3.60)

λ = m3[x+ 2t− (α
d
− 2u)] (3.61)

The infinitesimal generators vi are obtained to be

v1 = ∂
∂t
, v2 = ∂

∂x
, v3 = 2t ∂

∂t
+ x ∂

∂x
− [α

d
− 2u]2t ∂

∂u
(3.62)

The terms λtt, λx, λxx, λxxxx in the prolongation of the generator are expressed as

functions of α, β, λ, u.

The one-parameter groups Gi admitted by the infinitesimal generators, vi are de-

termined by solving the corresponding Lie equations which yield groups as

follows:

v1 = ∂
∂t

;G1 : X(x, t, u; ε)→ X1(x, t+ ε, u) (3.63)

v2 = ∂
∂x

;G2 : X(x, t, u; ε)→ X2(x, t+ ε, u) (3.64)

v3 = 2t ∂
∂t

+ x ∂
∂x
− [α

d
− 2u] ∂

∂u
;G3 : X(x, t, u; ε)→ X3(e

εx, e2εt, (e2ε − α
d
a)u) (3.65)

where a is arbitrary solution of the fourth order nonlinear Boussinesq equation.

These groups above are all trivial groups given as:

G1 : X(x, t, u; ε)→ X1(x, t+ ε, u)

G2 : X(x, t, u; ε)→ X2(x, t+ ε, u)

G1 : X(x, t, u; ε)→ X3(e
εx, e2εt, (e2ε − α

d
a)u)

Lie symmetry analysis of the Wave Equation

The wave equation expressed in two dimensions is of the form

∂2u
∂t2
− ∂2u

∂x2
− ∂2u

∂y2
= 0 (3.66)

We determine its infinitesimal transformations, infinitesimal generators and all the

groups it admits.
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We let the infinitesimal generator G for (3.66), be of the form

G = α(x, t, y, u) ∂
∂x

+β(x, t, y, u) ∂
∂t

+µ(x, t, y, u) ∂
∂y

+λ(x, t, y, u) ∂
∂u

(3.67)

Then we determine infinitesimals α, β, µ, λ so that the corresponding one-parameter

Lie group of transformations,

x∗ = X(x, t, y, u; ε), t∗ = T (x, t, y, u; ε), y∗ = T (x, t, y, u; ε), u∗ = U(x, t, y, u; ε)

form a symmetry group of (3.66).

From theorem 3.2, we know that the equation

G(2)[∂
2u
∂t2
− ∂2u

∂x2
− ∂2u

∂y2
] = 0 (3.68)

is the symmetry condition for (3.66) and we note that G(2) is the second prolon-

gation with

G(2) = α(x, t, y, u) ∂
∂x

+ β(x, t, y, u) ∂
∂t

+ µ(x, t, y, u) ∂
∂y

+ λ(x, t, y, u) ∂
∂u

+ λt ∂
∂ut

+

λx ∂
∂ux

+ λy ∂
∂uy

+ λxx ∂
∂uxx

+ λyy ∂
∂uyy

+ λxt ∂
∂uxt

+ λxy ∂
∂uxy

+ λxt ∂
∂uxt

+ λyt ∂
∂uyt

+ λtt ∂
∂utt

Hence equation (3.68) becomes

[α(x, t, y, u) ∂
∂x

+ β(x, t, y, u) ∂
∂t

+ µ(x, t, y, u) ∂
∂y

+ λ(x, t, y, u) ∂
∂u

+ λt ∂
∂ut

+ λx ∂
∂ux

+

λy ∂
∂uy

+ λxx ∂
∂uxx

+ λyy ∂
∂uyy

+ λxt ∂
∂uxt

+ λxy ∂
∂uxy

+ λxt ∂
∂uxt

+ λyt ∂
∂uyt

+ λtt ∂
∂utt

][∂
2u
∂t2
−

∂2u
∂x2
− ∂2u

∂y2
] = 0

Upon expansion it takes the form;

[α(x, t, y, u) ∂
∂x

[∂
2u
∂t2
− ∂2u

∂x2
− ∂2u

∂y2
]+β(x, t, y, u) ∂

∂t
[∂

2u
∂t2
− ∂2u

∂x2
− ∂2u

∂y2
]+µ(x, t, y, u) ∂

∂y
[∂

2u
∂t2
−

∂2u
∂x2
− ∂2u

∂y2
] +λ(x, t, y, u) ∂

∂u
[∂

2u
∂t2
− ∂2u

∂x2
− ∂2u

∂y2
] +λt ∂

∂ut
[∂

2u
∂t2
− ∂2u

∂x2
− ∂2u

∂y2
] +λx ∂

∂ux
+ [∂

2u
∂t2
−

∂2u
∂x2
− ∂2u

∂y2
]λy ∂

∂uy
[∂

2u
∂t2
− ∂2u

∂x2
− ∂2u

∂y2
] + λxx ∂

∂uxx
[∂

2u
∂t2
− ∂2u

∂x2
− ∂2u

∂y2
] + λyy ∂

∂uyy
[∂

2u
∂t2
− ∂2u

∂x2
−

∂2u
∂y2

]+λxt ∂
∂uxt

[∂
2u
∂t2
− ∂2u

∂x2
− ∂2u

∂y2
]+λxy ∂

∂uxy
[∂

2u
∂t2
− ∂2u

∂x2
− ∂2u

∂y2
]+λxt ∂

∂uxt
[∂

2u
∂t2
− ∂2u

∂x2
− ∂2u

∂y2
]+

λyt ∂
∂uyt

[∂
2u
∂t2
− ∂2u

∂x2
− ∂2u

∂y2
] + λtt ∂

∂utt
[∂

2u
∂t2
− ∂2u

∂x2
− ∂2u

∂y2
] = 0 (3.69)

Thus we obtain the infinitesimals condition to be

λtt − λxx − λyy = 0 (3.70)

which must be fulfilled whenever utt = uxx + uyy.

When (3.36) and (3.37)are substituted into (3.70)

we obtain:

λtt + 2utλut + uttλu + u2tλuu− ux(αtt + 2utαut + uttαu + u2tαuu)− uy(µtt + 2utµut +

uttµu+u2tµuu)−ux(βtt+2utβut+uttβu+u2tβuu)−2uxt(αt+utαu)−2uty(µt+utµu)−
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2uty(βt+utβu)− [λxx+2uxλux+uxxλu+u2xλuu−ux(αxx+2uxαux+uxxαu+u2xαuu−

ux)−uy(µxx+2uxµux+uxxµu+u2xµuu−ux)−ut(βxx+2uxβux+uxxβu+u2xβuu−ux)−

2uxx(αx+uxαu)−2uyx(µx+uxµu)−2utx(βx+uxβu)]−[λyy+2uyλuy+uyyλu+u2yλuu−

uy(αyy+2uyαuy+uyyαu+u
2
yαuu−uy)−uy(µyy+2uyµuy+uyyµu+u

2
yµuu−uy)−ut(βyy+

2uyβuy+uyyβu+u2yβuu−uy)−2uyy(αy+uyαu)−2uyx(µy+uyµu)−2uty(βy+uyβu)] =

0 (3.71)

On replacing utt by uxx + uyy wherever it occurs in the equation and equating

the coefficients of the various monomials in the first and second order partial

derivatives of u,we obtain the resulting equations for the Wave equation (3.66) as

tabulated below i.e.

Table 3.2: Determining Equations for the Wave Equation; equation(3.66)

Monomials Equations Equation number

uxxt βx + uxβu = 0 (i)

u2xxx βu = 0 (ii)

u2xx −3αu = 0 (iii)

uxuxxt βu = 0 (iv)

uxuxxx αu = 0 (v)

uxx 3αxx = 3λux (vi)

uxuxx 3λuu − 6αux − 9αux = 0 (vii)

u2x 3λuux = 0 (viii)

ux λ− αt + (λu − αx)u+ 3λuux = 0 (ix)

1 λxxx + uλxλt = 0 (x)

The solutions of (i)-(x) yield the infinitesimals α, β, µ, λ as below, [6].

α = c1 + c4x− c5y + c6t+ c8(x
2 − y2 + t2) + 2c9xy + 2c10xt (3.72a)

β = c3 + c6x− c7y + c4t+ c10(x2 − y2 + t2) + 2c9ty + 2c8xt (3.72b)
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µ = 1.c2 + 1c4y − 1c5x+ 1.c7t+ 2.c8xy + c9.(−x2 + y2 + t2) + 2.c10yt (3.72c)

λ = (c11 − c8x− c9y − c10t)u+ α(x, y, t) (3.72d)

α is an arbitrary solution of the wave equation.

We express α, β, µ, λ in the standard basis form:

α = 1.c1 + 0.c2 + 0.c3 + c4x− c5y+ c6t+ 0.c7 + c8(x
2− y2 + t2) + 2c9xy+ 2c10xt+

0.c11 + 0.cα

µ = 0.c1 + 1.c2 + 0.c3 + 1c4y + 1c5x+ 0.c6 + 1.c7t+ 2.c8xy + c9.(−x2 + y2 + t2) +

2.c10yt+ 0.c11 + 0.cα

β = 0.c1 + 0.c2 + 1.c3 + 1.c4t+ 0.c5 + 1.c6.x+ 1.c7y + 2.c8xt+ 2.c9.ty + c10.1(x2 −

y2 + t2) + 0.c11 + 0.cα

λ = 0.c1 + 0.c2 + 0.c3 + 0.c4 + 0.c5 + 0.c6 + 0.c7− 1.c8.1.x.u− c9.1.y.u− c10.1.u.t+

1.c11.u+ 1.cαα

We form the corresponding Lie Algebra of the basis generators v1, v2, v3, v4, v5, v6, v7,

v8, v9, v10, v11, vα of the form

vi = αi
∂
∂x

+ µi
∂
∂x

+ βi
∂
∂x

+ λi
∂
∂x

: αi, µi, βi, λi are the coefficients ci in the standard

solutions of α, β, µ, λ.

Hence the v′is are obtained from the tabulation as follows:

v1 = ∂
∂x
, v2 = ∂

∂y
, v3 = ∂

∂t
, v4 = x ∂

∂x
+ y ∂

∂y
+ t ∂

∂t
, v5 = −y ∂

∂x
+ x ∂

∂y
+ t ∂

∂t
, v6 =

t ∂
∂x

+ x ∂
∂t
, v7 = t ∂

∂y
+ y ∂

∂t
, v8 = (x2 − y2 + t2) ∂

∂x
+ 2yx ∂

∂y
+ 2xt ∂

∂t
− xu ∂

∂u
, v9 =

2xy ∂
∂x

(−x2 + y2 + t2) ∂
∂y

+ 2yt ∂
∂t
− yu ∂

∂u
, v10 = 2xt ∂

∂x
+ 2yt ∂

∂y
(x2 + y2 + t2) ∂

∂y
−

tu ∂
∂u
, v11 = u ∂

∂u
, vα = α(x, y, t) ∂

∂u
vα = α(x, y, t) (3.73)

To determine the one-parameter groups Gi admitted by equation (3.66) from the

infinitesimal generators, v′is, we solve the corresponding Lie equations which give

the groups as shown below. Olver[28]

v1 = ∂
∂x

;G1 : X(x, t, y, u : ε)→ X1(x+ε, y, t, u) (3.74a)

v2 = ∂
∂y

;G2 : X(x, t, y, u : ε)→ X2(x, y+ε, t, u) (3.74b)

v3 = ∂
∂t

;G3 : X(x, t, y, u : ε)→ X3(x, y, t+ε, u) (3.74c)

v4 = x ∂
∂x

+ y ∂
∂y

+ t ∂
∂t

;G4 : X(x, t, y, u : ε)→ X4(e
εx, eεy, eεt, u) (3.74d)

v5 = −y ∂
∂x

+ x ∂
∂y

+ t ∂
∂t

;G5 : X(x, t, y, u : ε)→ X5(x− ε, y, y + εx, eεt, u) (3.74e)
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v6 = t ∂
∂x

+x ∂
∂t

;G6 : X(x, t, y, u; ε)→ X6(x+εt, y, t+εx, u) (3.74f)

v7 = t ∂
∂x

+y ∂
∂t

;G7 : X(x, t, y, u; ε)→ X7(x, y+εt, t+εy, u) (3.74g)

v8 = (x2 − y2 + t2) ∂
∂x

+ 2yx ∂
∂y

+ 2xt ∂
∂t
− xu ∂

∂u
;G8 : X(x, t, y, u; ε)→

X8(
x+ε(t2−x2−y2)

1−2εx−ε2(t2−x2−y2) ,
y

1−2εx−ε2(t2−x2−y2) ,
t

1−2εx−ε2(t2−x2−y2) ,

u
√

1− 2εx− ε2(t2 − x2 − y2)) (3.74h)

v9 = 2xy ∂
∂x

+ (−x2 + y2 + t2) ∂
∂y

+ 2yt ∂
∂t
− yu ∂

∂u
;G9 : X(x, t, y, u; ε)→

X9(
x

1−2εy−ε2(t2−x2−y2) ,
y+ε(t2−x2−y2)

1−2εy−ε2(t2−x2−y2) ,
t

1−2εy−ε2(t2−x2−y2) ,

u
√

1− 2εy − ε2(t2 − x2 − y2)) (3.74i)

v10 = 2xt ∂
∂x

+ 2yt ∂
∂y

+ (x2 + y2 + t2) ∂
∂t
− tu ∂

∂u
;G10 : X(x, t, y, u; ε)→

X10(
x

1−2εt−ε2(t2−x2−y2) ,
y

1−2εt−ε2(t2−x2−y2) ,
t+ε(t2−x2−y2)

1−2εt−ε2(t2−x2−y2) ,

u
√

1− 2εt− ε2(t2 − x2 − y2)) (3.74j)

v11 = u ∂
∂u

;G11 : X(x, y, t, u : ε)→ X11(x, y, t, e
ε, u) (3.74k)

3.6 Canonical Variables

This technique was applied in integrating first order equation with a known in-

finitesimal symmetry.

This method is of great importance since it was used in eliminating the explicit

dependence of equation on one of the variables either x or t thus integrating the

equation by quadrature.

It was used in the reduction of higher order equations.

41



CHAPTER FOUR

LIE SYMMETRY SOLUTIONS OF SAWADA-KOTERA EQUATION

4.1 Introduction

In this chapter, Sawada-Kotera equation is solved using Lie symmetry analysis.

4.2 Infinitesimal Transformations

The solution of Sawada-Kotera equation of the form

ut+45u2ux+15uxuxx+15uuxxx+uxxxxx = 0 (4.1)

can be obtained analytically. In this study, we have solved Sawada-Kotera equa-

tion analytically using Lie symmetry analysis technique.

We generated infinitesimal generators, infinitesimal transformations and the groups

which the equation admits.

The groups of transformation required were of the form;

x∗ = X(x, t, u; ε) (4.2a)

t∗ = T (x, t, u; ε) (4.2b)

u∗ = U(x, t, u; ε) (4.2c)

And their corresponding infinitesimal transformations α, β, in which

α(x, t, u) = ∂X(x,t,u;ε)
∂x

|ε=0 (4.3a)

β(x, t, u) = ∂T (x,t,u;ε)
∂t

|ε=0 (4.3b)

λ(x, t, u) = ∂U(x,t,u;ε)
∂u

|ε=0 (4.3c)
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4.3 Infinitesimal Generator and Prolongations

The infinitesimal generator of equation (4.1) is

G = α(x, t, u) ∂
∂x

+ β(x, t, u) ∂
∂t

+ λ(x, t, u) ∂
∂u

(4.4)

with u = u(x, t)[6]

Since the equation is a fifth order differential equation, we used the fifth extension

(prolongation) of the generator.

The prolongations of the generator from the first to the fifth are:[28]

G[1] = G[0]+λt ∂
∂ut

+λx ∂
∂ux

(4.5)

G[2] = G[1]+λtt ∂
∂utt

+λtx ∂
∂utx

+λxx ∂
∂uxx

(4.6)

G[3] = G[2]+λttt ∂
∂uttt

+λttx ∂
∂uttx

+λtxx ∂
∂utxx

+λxxx ∂
∂uxxx

(4.7)

G[4] = G[3]+λtttt ∂
∂utttt

+λtttx ∂
∂utttu

+λttxx ∂
∂uttxx

+λtxxx ∂
∂utxxx

+λxxxx ∂
∂uxxxx

(4.8)

G[5] = G[4] + λttttt ∂
∂uttttt

+ λttttx ∂
∂uttttx

+ λtttxx ∂
∂utttxx

+ λttxxx ∂
∂uttxxx

+ λtxxxx ∂
∂utxxxx

+

λxxxxx ∂
∂uxxxxx

(4.9)

By theorem 3.2, the fifth prolongation acts on equation (4.1)

G[5][ut + 45u2ux + 15uxuxx + 15uuxxx + uxxxxx] = 0

α ∂
∂x

+β ∂
∂t

+λ ∂
∂u

+λt ∂
∂ut

+λx ∂
∂ux

+λtt ∂
∂utt

+λtx ∂
∂utx

+λxx ∂
∂uxx

+λttt ∂
∂uttt

+λttx ∂
∂uttx

+

λtxx ∂
∂utxx

+λxxx ∂
∂uxxx

+λtttt ∂
∂utttt

+λtttx ∂
∂utttu

+λttxx ∂
∂uttxx

+λtxxx ∂
∂utxxx

+λxxxx ∂
∂uxxxx

+

λttttt ∂
∂uttttt

+λttttx ∂
∂uttttx

+λtttxx ∂
∂utttxx

+λttxxx ∂
∂uttxxx

+λtxxxx ∂
∂utxxxx

+λxxxxx ∂
∂uxxxxx

]×

[ut + 45u2ux + 15uxuxx + 15uuxxx + uxxxxx] = 0 (4.10)

Thus we presented α ∂
∂x

[ut + 45u2ux + 15uxuxx + 15uuxxx + uxxxxx] + β ∂
∂t

[ut +

45u2ux + 15uxuxx + 15uuxxx + uxxxxx] + λ ∂
∂u

[ut + 45u2ux + 15uxuxx + 15uuxxx +

uxxxxx] + λt ∂
∂ut

[ut + 45u2ux + 15uxuxx + 15uuxxx + uxxxxx] + λx ∂
∂ux

[ut + 45u2ux +

15uxuxx + 15uuxxx + uxxxxx] + λtt ∂
∂utt

[ut + 45u2ux + 15uxuxx + 15uuxxx + uxxxxx] +

λtx ∂
∂utx

[ut+45u2ux+15uxuxx+15uuxxx+uxxxxx]+λ
xx ∂

∂uxx
[ut+45u2ux+15uxuxx+

15uuxxx+uxxxxx]+λ
ttt ∂
∂uttt

[ut+45u2ux+15uxuxx+15uuxxx+uxxxxx]+λ
ttx ∂

∂uttx
[ut+

45u2ux+15uxuxx+15uuxxx+uxxxxx]+λtxx ∂
∂utxx

[ut+45u2ux+15uxuxx+15uuxxx+

uxxxxx]+λ
xxx ∂

∂uxxx
[ut+45u2ux+15uxuxx+15uuxxx+uxxxxx]+λ

tttt ∂
∂utttt

[ut+45u2ux+

15uxuxx+15uuxxx+uxxxxx]+λ
tttx ∂

∂utttu
[ut+45u2ux+15uxuxx+15uuxxx+uxxxxx]+
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λttxx ∂
∂uttxx

[ut + 45u2ux + 15uxuxx + 15uuxxx + uxxxxx] + λtxxx ∂
∂utxxx

[ut + 45u2ux +

15uxuxx+15uuxxx+uxxxxx]+λ
xxxx ∂

∂uxxxx
[ut+45u2ux+15uxuxx+15uuxxx+uxxxxx]+

λttttt ∂
∂uttttt

[ut + 45u2ux + 15uxuxx + 15uuxxx + uxxxxx] + λttttx ∂
∂uttttx

[ut + 45u2ux +

15uxuxx+15uuxxx+uxxxxx]+λ
tttxx ∂

∂utttxx
[ut+45u2ux+15uxuxx+15uuxxx+uxxxxx]+

λttxxx ∂
∂uttxxx

[ut+45u2ux+15uxuxx+15uuxxx+uxxxxx]+λtxxxx ∂
∂utxxxx

[ut+45u2ux+

15uxuxx + 15uuxxx + uxxxxx] + λxxxxx ∂
∂uxxxxx

[ut + 45u2ux + 15uxuxx + 15uuxxx +

uxxxxx] = 0 (4.11)

Therefore, we obtained

αuxt + 90αuu2x + 45αu2uxx + 15αu2xx + 30αuxuxxx + 15αuuxxx + αuxxxxxx + βutt +

90βuuxut+45βu2uxt+15βuxtuxx+15βuxuxxt+15βutuxxx+15βuuxxxt+βuxxxxxt+

90λuux + 15λuxxx + λt + 45λxu2 + 15λxuxx + 15λxxux + 15λxxxu + λxxxxx =

0 (4.12)

From equation (4.1), we know that

uxxxxx = −ut−45u2ux−15uxuxx−15uuxxx (4.13)

and

uxxxxxx = (uxxxxx)
′

= (−ut − 45u2ux − 15uxuxx − 15uuxxx)
′

= −uxt−90uu2x−45u2uxx−15u2xx−30uxuxxx−15uuxxxx (4.14)

Also from equation (4.1) we have

ut = −45u2ux − 15uxuxx − 15uuxxx − uxxxxx (4.15)

and

utt = (ut)
′

= (−45u2ux − 15uxuxx − 15uuxxx − uxxxxx)
′

= −90uuxut−45u2uxt−15uxtuxx−15uxuxxt−15utuxxx−15uuxxxt−uxxxxxt (4.16)

Substituting equations (4.14) and (4.16) into equation (4.12), we obtained

αuxt + 90αuu2x + 45αu2uxx + 15αu2xx + 30αuxuxxx + 15αuuxxxx−αuxt− 90αuu2x−

45αu2uxx−15αu2xx−30αuxuxxx−15αuuxxxx−90βuuxut−45βu2uxt−15βuxtuxx−

15βuxuxxt− 15tuxxx− 15βuuxxxt− βuxxxxxt + 90βuuxut + 45βu2uxt + 15βuxtuxx +

15βuxuxxt + 15βutuxxx + 15βuuxxxt +βuxxxxxt + 90λuux + 15λuxxx +λt + 45λxu2 +
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15λxuxx + 15λxxux + 15λxxxu+ λxxxxx = 0 (4.17)

On simplifying, we had

90λuux + 15λuxxx + λt + 45λxu2 + 15λxuxx + 15λxxux + 15λxxxu + λxxxxx =

0 (4.18)

We replaced the generated coefficients in equations (3.34), (3.35), (3.37), (3.38)

and (3.40) into equation (4.18) and ensuring that we replaced ut = −45u2ux −

15uxuxx − 15uuxxx − uxxxxx whenever it appeared in the equation to obtain

90λuux+15λuxxx+λt−45u2uxλu−15uxuxxλu−15uuxxxλu−uxxxxxλu+45u2uxβt+

15uxuxxβt+15uuxxxβt+uxxxxxβt−uxαt+45u2u2xαu+15u2xuxxαu+15uuxuxxxαu+

uxuxxxxxαu− 2025u4u2xβu− 1350u2u2xuxxβu− 1350u3uxuxxxβu− 90u2uxuxxxxxβu−

250uuxuxxuxxxβu−225u2xu
2
xxβu−225u2u2u2xxxβu−30uxuxxuxxxxxβu−30uuxxxuxxxxxβu−

u2xxxxxβu+45u2λx+45u2uxλu−45u2uxαx−45u2u2xαu+2025u2u2xuxxβx+675u2uxuxxβx+

675u3uxxxβx + 45u2uxxxxxβx + 2025u4u2xβu + 675u2u2xuxxβu + 675u3uxuxxxβu −

45u2uxuxxxxxβu+15uxxλx+15uxuxxλu−15uxuxxαx−15u2xuxxαu+675u2uxuxxβx+

225uxu
2
xxβx + 225uuxxuxxxβx + 15uxxuuxxxxxβx + 675u2u2xuxxβu + 225u2xu

2
xxβu +

225uuxuxxuxxxβu+15uxuxxuxxxxxβu+15uxλxx+30u2xλux+15uxuxxλu+15u3xλuu−

15u2xαxx−30u3xαux−15u2xuxxαu−15u4xαuu+675u2u2xβxx+225u2xuxxβxx+225uuxuxxxβxx+

15uxuxxxxxβxx + 1350u2u3xβux + 450u3xuxxβux + 450uu2xuxxxβux + 30u2xuxxxxxβux +

675u2u2xuxxβu+225u2xu
2
xxβu+225uuxuxxuxxxβu+15uxuxxuxxxxxβu+675u2u4xβuu+

225u4xuxxβuu+225uu3xuxxxβuu+15u3xuxxxxxβuu−30uxuxxαx−30u2xuxxαu−30uxuxtβx−

30u2xuxtβu+15uλxxx+45uuxλuxx+45uuxxλux+15uuxxxλu+45uu2xλuux+45uuxuxxλuu+

15uu3xλuuu − 5uuxαxxx − 45uu2xαuxx − 45uuxuxxαux − 15uuxuxxxαu − 45uu3xαuux −

45uu2xuxxαuu − 15uu4xαuuu + 675u3uxβxxx + 225uuxuxxβxxx + 225u2uxxxβxxx+

15uuxxxxxβxxx+2025u3u2xβuxx+675uu2xuxxβuxx+675u2uxuxxxβuxx+45uuxuxxxxxβuxx+

2025u3uxuxxβux+675uuxu
2
xxβux+675u2uxxuxxxβux+45uuxxuxxxxxβux+675u3uxuxxxβu+

225uuxuxxuxxxβu+225u2u2xxxβu+15uuxxxuxxxxxβu+2025u3u3xβuux+675uu3xuxxβuux+

675u2u2xuxxxβuux + 45uu2xuxxxxxβuux + 2025u3u2xuxxβuu + 675uu2xu
2
xxβuu+

675u2uxuxxuxxxβuu + 45uuxuxxuxxxxxβuu + 675u3u4xβuuu + 225uu4xuxxβuuu+

225u2u3xuxxxβuuu + 15uu3xuxxxxxβuuu − 45uuxxαuu − 90uuxuxxαux − 45uu2xxαu −
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45uu2xuxxαuu−45uuxtβxx−90uuxuxtβux−45uuxxuxtβu−45uu2xuxtβuu−45uuxxxαx−

45uuxuxxxαu−45uuxxtβx−45uuxuxxtβu+λxxxxx+ux(5λuxxxx−αxxxxx)+uxx(10λuxxx−

5αxxxx)+uxxx(10λuxx−5αxxx)+uxxxx(5λux−5αxx)+uxxxxx(λu−5αx)+u
2
x(10λuuxxx−

5αuxxxx) + u3x(10λuuuxx − 10αuuxxx) + u4x(5λ[uuuux − 10αuuuxx) + u5x(λuuuuu −

5αuuuux)−u6xαuuuuu+u2xx(15λuux−30αuxx)−15u3xxαuu+uxuxx(30λuuxx−30αuxxx)+

uxuxxx(20λuux−25αuxx)+uxuxxxx(5λuu−15αux)−6uxuxxxxxαu+uxxuxxx(10λuu−

35αux) − 10uxxuxxxxαu + u2xuxx(30λuuux − 60αuuxx) + uxu
2
xx(15λuuu − 75αuux) +

u2xuxxx(10λuuu−35αuux)+u
3
xuxx(10λuuuu−50αuuux)−45uxuxxuxxxαuu−10u2xuxxxxαuu−

45u2xu
2
xxαuuu−15u3xuxxxαuuu−15u4xuxxαuuuu−5u2xxxαu+45u2uxβxxxxx+15uxuxxβxxxxx+

15uuxxxβxxxxx + uxxxxxβxxxxx + 225u2u2xβuxxxx + 75u2xuxx + 75uuxuxxxβuxxxx+

5uxuxxxxxβuxxxx + 450u2uxuxxβuxxx + 150uxu
2
xxβuxxx + 150uuxxuxxxβuxxx+

10uxxuxxxxxβuxxx + 450u2uxuxxxβuxx + 150uxuxxuxxxβuxx + 150uu2xxxβuxx+

10uxxxuxxxxxβuxx + 225u2uxuxxxxβux + 75uxuxxuxxxxβux + 75uuxxxuxxxxxβux+

5uxxxxuxxxxxβux+45u2uxuxxxxxβu+15uxuxxuxxxxxβu+15uuxxxuxxxxxβu+u2xxxxxβu+

450u2u3xβuuxxx + 150u3xuxxβuuxxx + 150uu2xuxxxβuuxxx + 10u2xuxxxxxβuuxxx+

1350u2u2xuxxβuuxx + 450u2xu
2
xxβuuxx + 450uuxuxxuxxxβuuxx + 30uxuxxuxxxxxβuuxx+

675u2uxu
2
xxβuux + 225uxu

3
xxβuux + 225uu2xxuxxxβuux + 15u2xxuxxxxxβuux+

900u2u2xuxxxβuux + 300u2xuxxuxxxβuux + 300uuxu
2
xxxβuux + 20uxuxxxuxxxxxβuux+

450u2uxuxxuxxxβuu + 150uxu
2
xxuxxxβuu + 150uuxxu

2
xxxβuu + 10uxxuxxxuxxxxxβuu+

225u2u2xuxxxxβuu + 75u2xuxxuxxxxβuu + 75uuxuxxxuxxxxβuu + 450u2uu4xβuuuxx+

150u4xuxxβuuuxx + 150uu3xuxxxβuuuxx + 10u3xuxxxxxβuuuxx + 1350u2u3xuxxβuuux+

450u3xu
2
xxβuuux + 450uu2xuxxuxxxβuuux + 30u2xuxxuxxxxxβuuux + 675u2u2xu

2
xxβuuu+

225u2xu
3
xxβuuu + 225uuxu

2
xxuxxxβuuu + 15uxu

2
xxuxxxxxβuuu + 450u2u3xuxxxβuuu+

150u3xuxxuxxxβuuu + 150uu2xu
2
xxxβuuu + 10u2xuxxxuxxxxxβuuu + 225u2u5xβuuuux+

75u5xuxxβuuuux + 75uu4xuxxxβuuuux + 5u4xuxxxxxβuuuux + 450u2u4xuxxβuuuu+

150u4xu
2
xxβuuuu + 150uu3xuxxuxxxβuuuu + 10u3xuxxuxxxxxβuuuu + 45u2u6xβuuuuu+

15u6xuxxβuuuuu + 15uu5xuxxxβuuuuu + u5xuxxxxxβuuuuu − 5uxtβxxxx − 20uxuxtβuxxx −

30uxxuxtβuxx − 20uxxxuxtβux − 5uxxxxuxtβu − 30u2xuxtβuuxx − 60uxuxxuxtβuux −

15u2xxuxtβuu − 20uxuxxxuxtβuu − 20u3xuxtβuuux − 30u2xuxxuxtβuuu − 5u4xuxtβuuuu −
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5uxxtβxxx−5uxuxxtβuxx−15uxxuxxtβux−5uxxxuxxtβu−15u2xuxxtβuux−15uxuxxuxxtβuu−

5u3xuxxtβuuu− 5uxxxtβxx− 10uxuxxxtβux− 5uxxuxxxtβu− 5u2xuxxxtβuu− 5uxxxxtβx−

5uxuxxxxtβu = 0 (4.19)

Since α, β and λ are functions of x, t and u only, we equated the coefficients of the

powers of u = u(x, t) and their combinations to zero.

We obtained the determining equations as follows.

Table 4.1: Determining Equations for Sawada-Kotera Equations

Monomials Equations Equation number

uxuxxxxt −5βu = 0 (i)

uxxxxt −5βx = 0 (ii)

u2xxx −βu = −βu (iii)

uxxuxxxuxxxxx βuu = 0 (iv)

uxuxxxxx −6αu = −5βuxxxx − αu − 15βxx (v)

uxxxxx βxxxxx − λu + βt +u −5αx = 0 (vi)

uxxuxxx 10λuu − 35αux = 0 (vii)

u3xx αuu = 0 (viii)

ux −αt = αxxxxx − 5λuxxxx − 15λxx (ix)

The subscripts indicate the derivatives. Thus the solution of the determining

equations is elementary.

Equations (i) and (ii) shows that β is a function of t only since it is independent

of u and x . So β = β(t) . Equation (v) shows that α does not depend on u since

βuxxxx = 0 and βxx = 0 and α = α(x, t) thus αxx = 0 which shows that α is linear

in x. Therefore α = c(t)x+ d(t)

Equation (vi) also shows that αx = 1
5
βt implying that α = 1

5
βtx+ µ(t) where µ is

some functions of t only.

Equating the values of α we have
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α = c(t)x+ d(t) and α = 1
5
βtx+ µ(t) (4.20)

to obtain

c(t) = 1
5
βt and d(t) = µ(t) thus we have the values of α as given below

α = a1 + 1
5
a3x (a)

By equation (vii), we see that λuu = 0 because α is not a function of u . Thus λ

is linear in u .

So λ = τ(x, t)u+ ψ(x, t) (4.21)

for certain functions of τ and ψ.

Referring to equation (ix) we have −αt = αxxxxx − 5λuxxxx − 15λxx then λxx = 0

and αxxxxx = 0 since αxx = 0 thus −αt = −5λuxxxx

αt = 5λuxxxx = 5τx (4.22)

But α = c(t)x+ d(t) so

τx = 1
5
[αt] = 1

5
[ct(t)x+ dt(t)] = 1

5
[1
5
βttx+ µt(t)]

Thus we have

τx = 1
5
[αt] = 1

5
[1
5
βttx+ µt(t)] (4.23)

And also τx = 1
5
[αt] = 1

5
[ct(t)x+dt(t)] (4.24)

Integrating both (4.23) and (4.24) respectively, we had

τ = 1
5
[ 1
10
βttx

2 + µt(t)x] + η(t)

= 1
50
βttx

2 + 1
5
µt(t)x+ η(t) (4.25)

τ = 1
10
ct(t)x

2 + 1
5
dt(t)x+ η(t) (4.26)

Lastly equation (x) implied that τ and ψ be the solutions of Sawada-Kotera equa-

tion.

λ = τ(x, t)u+ ψ(x, t) (4.27)

So we have

λt = τt(x, t)u+ ψt(x, t) (4.28)

λxxxxx = τxxxxx(x, t)u+ ψxxxxx(x, t) (4.29)

Therefore from equation (x) we had

τt(x, t)u+ ψt(x, t) = −(τxxxxx(x, t)u+ ψxxxxx(x, t)) (4.30)

Equating the coefficients of u and other terms, we obtained
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τt(x, t) = −τxxxxx(x, t) (4.31)

and

ψt(x, t) = −ψxxxxx(x, t) (4.32)

Using equations (4.25) and (4.26) upon equations (4.31) and (4.32), we obtained

τt = 1
50
βtttx

2 + 1
5
µtt(t)x+ ηt(t) (4.33)

τt = 1
10
ctt(t)x

2 + 1
5
dtt(t)x+ ηt(t) (4.34)

So upon differentiating equations (4.33) and (4.34) with respect to x , we had

−τxxxxx = 1
25
βtt or −τxxxxx = 1

5
ct

Therefore, we wrote the equations as

1
50
βtttx

2 + 1
5
µtt(t)x+ ηt(t) = − 1

25
βtt

1
10
ctt(t)x

2 + 1
5
dtt(t)x+ ηt(t) = −1

5
ct

Equating the coefficients of x , we got ctt = 0, dtt = 0, βttt = 0, µtt = 0

Thus we had ηt(t) = − 1
25
βtt and also ηt(t) = −1

5
ct

Hence β is linear in t thus it can be expressed as

c(t) = c0 + c1t (4.35)

and d(t) = d0 + d1t (4.36)

therefore we express β as

β = a2 + ta3 (b)

Finally, with λ = τ(x, t)u+ ψ(x, t) then we have

λ = −2
5
ua3 (c)

Thus with G = α(x, t, u) ∂
∂x

+β(x, t, u) ∂
∂t

+λ(x, t, u) ∂
∂u

we had the general solutions

from the determining equations became

α = a1+ 1
5
a3x (4.37i)

β = a2 + ta3 (4.37ii)

λ = −2
5
ua3+ξ(x, t) (4.37iii)

where ξ is an arbitrary solution of Sawada-Kotera equation.
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4.4 Infinitesimal Generators and Lie Groups

The infinitesimal transformations of Sawada-Kotera equation, α, β and λ are ex-

pressed as

w1 w2 w3

↓ ↓ ↓

α = 1.c1 0.c2
1
5
.c3x

β = 0.c1 1.c2 1.c3t

λ = 0.c1 0.c2 −2
5
.c3u

Thus we formed the corresponding basis/ infinitesimal generators as follows.

w1 = ∂
∂x

w2 = ∂
∂t

w3 = x ∂
∂x

+ 5t ∂
∂t
− 2u ∂

∂u

We then computed the Lie brackets of the vector fields of the infinitesimal sym-

metry (wi) by using

[wi, wj] = wiwj − wjwi

to obtain

wi, wj w1 w2 w3

w1 0 0 w1

w2 0 0 5w2

w3 −w1 −5w2 0

Lie groups admitted by infinitesimal generators were obtained by solving the cor-

responding Lie equations through exponentiation which led to the formation of

the groups as follows

w1 = ∂
∂x

;G1(ε) : X(x, t, u; ε)→ X1(x+ ε, t, u)

50



w2 = ∂
∂t

;G2(ε) : X(x, t, u; ε)→ X2(x, t+ ε, u)

w3 = x ∂
∂x

+ 5t ∂
∂t
− 2u ∂

∂u
;G3(ε) : X(x, t, u; ε)→ X3(xe

ε, te5ε, ue−2ε)

Where G1 and G2 are trivial groups since they are translation and scaling while

G3 is a non-trivial group.

4.5 Group Transformations of Solutions

If each Gi is a symmetry group and u = ρ(x, t) is a solution of Sawada-Kotera

equation (4.1), then the functions uj below are also solutions.[28]

u1 = ρ(x− ε, t)

u2 = ρ(x, t− ε)

u3 = ρ(xe−ε, te−5ε)e−2ε

Noting that groups G1 and G2 are trivial groups since they are translation and

scaling while G3 is a non-trivial group.

4.6 Invariant Solutions and Exact Power Series Solutions

A group invariant solution is obtained when a group of transformations maps a so-

lution into itself. The invariant solution of equation (4.1) under the one -parameter

group of generator V can be obtained by calculating two independent invariants

N1 = k(x, t) and N2 = µ(x, t, u) by solving the equation

N(J) ≡ α(x, t, u)∂N
∂x

+ξ(x, t, u)∂N
t

+ρ(x, t, u)∂N
∂u

= 0 (4.39)

Or its system of characteristics

dx
α(x,t,u)

= dt
ξ(x,t,u)

= du
ρ(x,t,u)

(4.40)

Here we consider the group transformations that arise from all the generators of

(4.1)

We then allocate one of the invariants as a function of the other as given below

µ = φ(k) (4.41)

We then substitute for µ , in (4.41) to get an ordinary differential equation for
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the function φ(k) of one variable. By doing this we decrease the figure/number of

independent variables by one.

We now show the list of generators (Xi) and their equivalent Invariant Solutions

(u)

Case 1

For the infinitesimal generator w2 = ∂
∂x

, the invariant solution under transforma-

tion has a system of characteristics dt
0

= dx
1

Integrating the equation, we obtained

t = µ, t = ξ and u = φ(t).

When we substituted ut = ρ′, ux = 0 for φ′ = dφ
dt

into equation (4.1) we got the triv-

ial solution to be u = φ(t) = c (4.42)

Case 2

For the generator w2 = ∂
∂t
, the invariant solution under transformation has a

system of characteristics dt
1

= dx
0

Integrating the equation, we have x = µ, x = ξ and u = ρ(x)

When we substituted ut = 0, ux = φ′, uxx = φ′′, uxxx = φ′′′, uxxxxx = φ(5) for

φ′ = dφ
dx

into equation (4.1), the equation was reduced into the following ordinary

differential equation

45φ2φ′ + 15φ′φ′′ + 15φφ′′′ + φ(5) = 0 (4.43)

where φ′ = dφ
dµ
.

Case 3

For the generator, w3 = x ∂
∂x

+ 5t ∂
∂t
− 2u ∂

∂u
, the invariant solution under transfor-

mation has a system of characteristics dt
5t

= dx
x

= du
−2u
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Integrating the equation yielded

lnx = lnt
1
5 + c⇒ x

t
1
5
⇒ µ = xt−

1
5

and

lnx = lnu−
1
2 + c⇒ x

u−
1
2
⇒ µ = xu

1
2

Giving xt−
1
5 = xu

1
2 ⇒ t−

1
5 = u

1
2 and on squaring both sides, we got u = t−

2
5φ(µ)

where µ = xt−
1
5 .

Substituting into equation (4.1), reduced the equation into the following Ordinary

Differential Equation

−2
5
φ− 1

5
µφ
′
+ 45φ2φ

′
+ 15φ′φ′′ + 15φφ′′′ + φ(5) = 0 (4.44)

where φ′ = dφ
dµ

In this case, the exact solutions to the Sawada-Kotera equation were obtained

from some ODEs or from PDEs of lower order than the original PDE [21].

Besides this, we want to identify the explicit solutions conveyed in terms of ele-

mentary or, at least, known functions of mathematical physics, in terms of quadra-

tures. This is not always the case, for simple semilinear PDEs. However, we know

that the power series can be used to solve differential equations, including many

complicated differential equations with non-constant coefficients.

We considered the exact analytic solutions to the reduced equations using the

power series method. Once we obtained the exact analytic solutions of the re-

duced equations (ODEs), the exact power series solutions to the original PDEs

were obtained.

In this case, we considered equations (4.43) and (4.44).

In view of (4.43) we have

45φ2φ′ + 15φ′φ′′ + 15φφ′′′ + φ(5) = 0

We obtain its solution by use of a power series method given as

φ(β) = Σ∞a=0caβ
a (4.45)

Substituting (4.45) into (4.43) we got

120c5+Σ∞a=1(a+1)(a+2)(a+3)(a+4)(a+5)ca+5β
a+90c0c3+15Σa

z=0(a−z+1)(a−

z+2)(a−z+3)czca−z+2β
a+30c1c2+15Σa

z=0(a−z+1)(a−z+2)(z+1)cz+1ca−z+2+

53



45c20c1 + 45Σa
z=0Σ

z
i=0(a− z + 1)cicz−ica−z+1 (4.46)

Setting a = 0, we got

120c5 + 90c0c3 + 30c1c2 + 45c20c1 = 0

On simplifying we get

c5 = − 1
120

(90c0c3 + 30c1c2 + 45c20c1) (4.47)

For a ≥ 1 we obtained

ca+5 = −1
(a+1)(a+2)(a+3)(a+4)(a+5)

[15Σa
z=0(a − z + 1)(a − z + 2)(a − z + 3)czca−z+3 +

15Σa
z=0(a−z+1)(a−z+2)(z+1)cz+1ca−z+2+45Σa

z=0Σ
z
i=0(a−z+1)cicz−ica−z+1] (4.48)

for a− 0, 1, 2...

When a = 1 we had

c6 = −1
720

(360c0c4+180c1c3+90c20c2+60c22+90c0c
2
1) (4.49)

When a = 2 we had

c7 = −1
2520

(900c0c5+540c1c4+135c20c3+360c2c3+270c0c1c2+45c31 (4.50)

Thus the power series solution (4.45) into (4.43) gave an exact analytic solution

of the form:

φ(β) = c0 + c1β + c2β
2 + c3β

3 + +c4β
4 + c5β

5 + Σ∞a=1ca+5β
a+5

= c0 + c1β + c2β
2 + c3β

3 + c4β
4 − 1

120
(90c0c3 + 30c1c2 + 45c20c1)β

5−

Σ∞a=1
1

(a+1)(a+2)(a+3)(a+4)(a+5)
[15Σa

z=0(a− z + 1)(a− z + 2)(a− z + 3)czca−z+3+

15Σa
z=0(a−z+1)(a−z+2)(z+1)cz+1ca−z+2+45Σa

z=0Σ
z
i=0(a−z+1)cicz−ica−z+1]β

a+5 (4.51)

Now, the exact power series solution of (4.1) was obtained to be

u(x, t) = c0 + c1x+ c2x
2 + c3x

3 + c4x
4 + c5x

5 + Σ∞a=1ca+5x
a+5

= c0 + c1x+ c2x
2 + c3x

3 + c4x
4 − 1

120
(90c0c3 + 30c1c2 + 45c20c1)x

5−

Σ∞a=1
1

(a+1)(a+2)(a+3)(a+4)(a+5)
[15Σa

z=0(a− z + 1)(a− z + 2)(a− z + 3)czca−z+3+

15Σa
z=0(a−z+1)(a−z+2)(z+1)cz+1ca−z+2+45Σa

z=0Σ
z
i=0(a−z+1)cicz−ica−z+1]x

a+5 (4.52)

where ci(i = 0, 1, 2, 3, 4) are arbitrary constants.

Also, we found a solution of equation (4.44) in a power series method of the form

(4.45). substituting into (4.44) and comparing the coefficients, we obtained

120c5 + Σ∞a=1(a + 1)(a + 2)(a + 3)(a + 4)(a + 5)ca+5β
a + 90c0c3 + 15Σa

z=0(a −

z + 1)(a − z + 2)(a − z + 3)czca−z+3β
a + 30c1c2 + 15Σa

z=0(a − z + 1)(a − z +
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2)(z + 1)cz + 1ca−z+2 + 45c20c1 + 45Σa
z=0Σ

z
i=0(a− z + 1)cicz−ica−z+1− 2

5
ca− 1

5
aca =

0 (4.53)

Setting the coefficients for a = 0 we obtained

120c5 + 90c0c3 + 30c1c2 + 45c20c1 − 2
5
c0 = 0

which was simplified to give

c5 = − 1
120

(90c0c3 + 30c1c2 + 45c20c1− 2
5
c0) (4.54)

For a ≥ 1, we obtained

ca=5 = −1
(a+1)(a+2)(a+3)(a+4)(a+5)

[15Σa
z=0(a − z + 1)(a − z + 2)(a − z + 3)czca−z+3 +

15Σa
z=0(a−z+1)(a−z+2)(z+1)cz+1ca−z+2 +45Σa

z=0Σ
z
i=0(a−z+1)cicz−ica−z+1−

2
5
ca − 1

5
aca] (4.55)

For the values of a = 0, 1, 2...

When a = 1 we have

c6 = 1
720

(360c0c4+180c1c3+90c20c2+60c22+90c0c
2
1−3

5
c1 (4.56)

When a = 2 we have

c7 = −1
2520

(900c0c5+540c1c4+135c20c3+360c2c3+270c0c1c2+45c31−4
5
c2 (4.57)

Therefore the power series solution of equation (4.44) is given as

φ(β) = c0 + c1β + c2β
2 + c3β

3 + c4β
4 + c5β

5 + Σ∞a=1ca+5β
a+5

= c0 + c1β + c2β
2 + c3β

3 + c4β
4 − 1

120
(90c0c3 + 30c1c2 + 45c20c1 − 2

5
c0)β

5 −

Σ∞a=1
1

(a+1)(a+2)(a+3)(a+4)(a+5)
[15Σa

z=0(a − z + 1)(a − z + 2)(a − z + 3)czca−z+3 +

15Σa
z=0(a−z+1)(a−z+2)(z+1)cz+1ca−z+2 +45Σa

z=0Σ
z
i=0(a−z+1)cicz−ica−z+1−

2
5
ca − 1

5
aca]β

a+5)

Hence the exact analytic solution to equation (4.1) is given as

u(x, t) = c0t
− 2

5 + c1xt
− 3

5 + c2x
2t−

4
5 + c3x

3t−1 + c4x
4t−

6
5 − 1

120
(90c0c3 + 30c1c2 +

45c20c1− 2
5
c0)x

5t−
7
5 −Σ∞a=1

1
(a+1)(a+2)(a+3)(a+4)(a+5)

[15Σa
z=0(a− z + 1)(a− z + 2)(a−

z+3)czca−z+3 +15Σa
z=0(a−z+1)(a−z+2)(z+1)cz+1ca−z+2 +45Σa

z=0Σ
z
i=0(a−z+

1)cicz−ica−z+1−2
5
ca−1

5
aca]x

a+5t−
a+7
5 (4.58)

55



4.7 Symmetry Solutions

Symmetry transformations convert known solutions into new solutions. Consider-

ing group transformations that arise from the infinitesimal generators

w1 = ∂ , w2 = ∂ , w3 = x∂ + 5t∂ − 2u∂

known to be

G1 : X(x, t, u; ε)→ X1(x+ ε, t, u)

G2 : X(x, t, u; ε)→ X2(x, t+ ε, u)

G3 : X(x, t, u; ε)→ X3(xe
ε, te5ε, ue−2ε)

Since u = u(x, t) is a known solution of equation (4.1) and so is

G3(ε)f(x, t) = f(xe−ε, te−5ε)e
−2ε

We consider the group G3. Thus the new symmetry transformed solution under

G3 becomes

u = f(xeε, te5ε).e−2 (4.59)

whenever a known solution of (4.1)is given as u = u(x, t)

Solution 1

Considering the invariant result of (4.1), u = c and substituting into equation

(4.59) we obtain

u = ce−2ε

Solution 2

Inserting the exact solution

u = c0 + c1x+ c2x
2 + c3x

3 + c4x
4 − 1

120
(90c0c3 + 30c1c2 + 45c20c1)x

5 − (b∗)xa+5

as a known solution of equation (4.1) in which

b∗ = Σ∞a=1
1

(a+1)(a+2)(a+3)(a+4)(a+5)
[15Σa

z=0(a− z+ 1)(a− z+ 2)(a− z+ 3)czca−z+3 +

15Σa
z=0(a− z+ 1)(a− z+ 2)(z+ 1)cz+1ca−z+2 + 45Σa

z=0Σ
z
i=0(a− z+ 1)cicc−ica−z+1]
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into (4.59) then we obtain

u = [c0+c1xe
ε+c2(xe

ε)2+c3(xe
ε)3+c4(xe

ε)4− 1
120

(90c0c3+30c1c2+45c20c1)(xe
ε)5−

(b∗)(xe(aε+5ε))].e−2ε

Solution 3

Substituting the exact solution

u = c0t
− 2

5 + c1xt
− 3

5 + c2x
2t−

4
5 + c3x

3t−1 + c4x
4t−

6
5 − 1

120
(90c0c3 + 30c1c2 + 45c20c1−

2
5
c0)x

5t−
7
5 − (b∗)(xa+5t−

a+7
5 )

as a known solution of equation (4.1) and b∗ taken as stated above into equation

(4.59) we obtain

u = [c0(te
5ε)−

2
5 +c1xe

ε(te5ε)−
3
5 +c2(xe

ε)2(te5ε)−
4
5 +c3(xe

ε)3(te5ε)−1+c4(xe
ε)4(te5ε)−

6
5−

1
120

(90c0c3 + 30c1c2 + 45c20 − 2
5
c0)(xe

ε)5(te5ε)−
7
5 − (b∗)(xeε)a+5(te5ε)−

a+7
5 )].e−2ε

Solutions 1 and 2 are trivial solutions since they are generated from trivial groups;

G1 and G2. Solution 3 is a non-trivial solution from the non-trivial group; G3.

Thus the new symmetry solutions were successfully obtained.
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CHAPTER FIVE

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

5.1 Introduction

This section entails summary, conclusions and recommendations.

5.2 Summary

In this study, we have obtained the symmetries and similarity reductions of the

Sawada-Kotera equation which is highly nonlinear using Lie symmetry analysis

method. We developed infinitesimal transformations, prolongations (extensions of

the generator), symmetry generators and group transformations of the equation.

All the group-invariant solutions to the equations are considered and the exact

analytic solutions are investigated by using the power series method. We also

obtained symmetry solutions of Sawada-Kotera equation from the exact power

series solutions.

5.3 Conclusions

Our obtained symmetry solutions demonstrate that Lie symmetry analysis method

is straightforward and best mathematical tool to obtain analytical solutions of

highly nonlinear PDE’s.

The thesis has proved that nonlinear differential equations can be solved easily

to obtain their exact solutions which has direct impact on the big four agenda

in terms of manufacturing as can be expressed in modeling of mechanical waves,

water waves, sound waves, light waves and more so in navigation.

58



5.4 Recommendations

We hope that this method can be more effectively used to investigate others NLEEs

which are frequently used in applied mathematics, physical sciences and engineer-

ing.

The solution can be obtained more easily if solvers like MATHEMATICA, MAT-

LAB and MATHTYPE can be involved since the working is so rigorous and time

consuming.

5.5 Suggestions for Further Research

Future research may take into consideration the solutions of the sixth and higher

order nonlinear partial differential equations that have not been determined in

previous researches.
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