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ABSTRACT

The problems of differential equations are encountered in physical fields, engi-
neering fields and mathematical world thus it is so important to find their exact
solutions.The exact solutions of partial differential equations and ordinary differ-
ential equations have been sought by scholars for a number of decades. Researchers
have used Lie symmetry approach to solve ordinary differential equations and par-
tial differential equations. The progressive wave solution of one-dimensional wave
equation was first discovered by Jeane Le Rond D’ Atemmbert (1717-1783).His
solution was a special application of the method of characteristics. The Sawada-
Kotera equation is a special form of wave equation and the generalized Riccati
equation mapping with the essential quotient group expansion techniques on con-
structing plentiful traveling wave results has been used in the past to solve the
Sawada-Kotera equation among many other methods but the results the were not
easily found since one could make errors during the plotting of graphs. In this
study, we concentrated on analysis of fifth order Sawada-Kotera equation of the
form; u, + 45uuy + 15Uptyy + 15Ul + Uzsess = 0 using Lie symmetry analysis
because the solution does not depend on the initial and boundary values hence is
not an approximation to the exact solution and it has not been solved previously
using this method. The study aimed at obtaining all the Lie groups admitted by
the equation, invariant and exact solutions and symmetry solutions. The method-
ology involved application of infinitesimal transformations and generators, prolon-
gations, adjoint symmetries, variation symmetries, invariant transformation and
integrating factors so as to establish all the Lie groups shown by the equation.Our
obtained solutions demonstrated that Lie symmetry analysis method is a sraight
forward and best mathematical tool used to obtain analytical solutions of highly
nonlinear PDEs.
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CHAPTER ONE

INTRODUCTION

1.1 Overview

This chapter entails the background of the study, basic concepts,statement of the

problem, objectives of the study and the significance of the study.

1.2 Background of the Study

Lie symmetry group theory of differential equations has been in existence since
19th century. It was developed by Sophus Lie . He introduced the use of groups
of transformations known as Lie groups in the research of differential equations’
symmetry properties and their results. In this case a symmetry group outlines
results of the system to another result of a similar system. Yaglom et al. [39].
Solving equations has been one of the most important driving forces in the history
of Mathematics. Nonlinear PDEs and ODEs have been of great interest in the
recent years because they are applied in physical, financial, engineering and math-
ematical fields since it is considered that solving problems of PDEs and ODEs is
very important in applied Mathematics.

Lie did not only give the solution of the problems but also instituted a new branch
of Mathematics in the field of symmetry.

In spite of the existence of literature on Lie groups, group theory has not been in
use lately due to the following factors:

(i) Most scholars believe that there is difficulty in finding symmetry group of an
equation as it is to solve it,

(ii) It is believed that Lie groups provide randomly occurring particular solutions

only and



(iii) It is considered to be only useful for linear equations.
In this study, we have applied Lie symmetry analysis in the solution of Sawada-
Kotera equation which is a fifth order nonlinear wave equation expressed as

s+ 45U Uy + 15Uy Uy + 15UULr + Uppgrs = 0 (1.1)

1.3 Basic Mathematical Concepts

The following terms have been used in the study.

Definition 1.2.1 A Group

A group P is a non empty set of elements with a law of composition o between
the elements of P which satisfy the conditions below [5]:

(i) Closure property

For elements m and n of P,a(m,n) is an element of P.

(ii) Associative property

For some elements m,n and k of P, a[m,a(n, k)] = ala(m,n), k|

(iii) Identity element

There exist a unique identity element e of P such that for any element m of
P,a(m,e) = ale,m) =m

(iv) Inverse element

For some element m of P there exist a unique inverse element m~! in P such that,

a(m,m™) =a(m™,m)=ec.

Definition 1.2.2 An Abelian Group

A group P is abelian if a(m,n) = a(n, m) hold for all elements m,n € P.[§]



Definition 1.2.3 A subgroup

A subgroup of P is a group formed by a subset of elements of P with the same

law of composition «.

Definition 1.2.4 Point Transformation

Consider the point X = (z1,xs,....2,) which lies in the domain B C R" in

n-dimensional space, then z* = f(x;¢) is a set of point transformation.

Definition 1.2.5 Group of Transformations

Let X = (21,29 .vvon. .. x,) € B C R". It follows that the set of transformation
x* = f(x;¢) defined for every = in B depending upon a parameter ¢ lying in a set
A C R with a(e, d) defining a law of composition of parameter € and § in A forms
a set of transformations in B if and only if [6]:

(i) For every parameter € € A, the transformations are one to one and onto B and
more specifically x* lies in B.

(ii) A with the law of composition « forms a group P.

(iii) X* = X where € = e such that X(z;e) = X

(iv)If 2* = f(x;¢), 2™ = f(a*;§) then 2™ = f(z;a(e, d)).

Definition 1.2.6 An Orbit

An orbit of a point X = (z1,x9,...,2,) is a set of points x* = x*(e) for every

ce A



Definition 1.2.7 A One-parameter Lie Group

A group of transformation describes a one parameter Lie group of point transfor-
mation if besides satisfying the properties of z* = f(x;) as above, it also states
that:

(i) A is an interval in R and ¢ is a continuous parameter; such that ¢ = 0 corre-
sponding to the identity element e.

(ii) f is infinitely differentiable with respect to z in B and also a systematic func-
tion of € in A.

(ili) a(e,0) is a systematic function of €, € A and thus a(m,n) = m + n for lie

groups.

Definition 1.2.8 A Two-parameter Lie Group

A two-parameter group of transformation z* = f(z;¢) with x = (21,22 ... 2,) and
parameters € = (€1, ) is called a two- parameter lie group of transformation if it
also satisfy the properties (i), (ii) above and the composition laws of parameters are
denoted by ¢(e,d) = (¢1(g,0), P2(g,0)) which is an analytic function of € = (g1, €2)
and § = (d1,07) in A.

Theorem 1.2.1 Lie’s first fundamental theorem

There exists a parameterization $(e) such that the Lie group of transformations
x* = f(z,e) is equal to the solution of the initial value problem (IVP) for the first

order differential equations

% = a(z*) (1.2)
with initial conditions z* = z, when g = 0 (1.3)

/

Particularly 5(e) = f .

o ale)de (1.4)



where a(e’) = %hs,é)z(g—l,a) (1.5)

and «(0) = 1. (1.6)

whereby 7! denotes the inverse of .

Proof

First we show that z* = f(x,¢) leads to (1.2),(1.3),(1.4),(1.5). Expand the left
hand side of f(z;e + Ae) = f(f(x;¢); M7t e + Ag)) (1.7)
in a power series in AAe about Ae = 0 so that
Flrye+ Ae) = a* + 2 A e 0((Ae)?) (1.8)
where x* is given by z* = f(x,¢). Then expanding A(e~!, e+ A¢) in a power series
in Ae) about Ae = 0 we have
MeThe+Ae)=Aele) +ale) Ae+0((Le)?)
= a(e) Ne+0((Le)?) (1.9)
where a(g) is defined by equation (1.5). Consequently, after expanding the right-
hand side of equation (1.7) in a power series in Ae about Ae = 0, we obtain
flxse+ DNe) = f(zr; M e+ Ae))

= f(a*;a(c) A e0((Ae)?))

= f(2*;0) + a(e) Aelh(a*;6)]5m0 + 0((Ae)?))

=" + a(e)(z*) A e+ 0((De)?)). (1.10)
Equating (1.8) and (1.9) we see that 2* = f(x; ) satisfies the initial value problem

for the system of differential equations

& — a(e)a(z*) (1.11)
with 2* =z at ¢ = 0. (1.12)

From z* = z + ea(x) +° (¢?) it follows that a(0) = 1. The parameterization

B(e) = [T a(e)ds leads to (1.2) and (1.3).

da(zx)
ox;

Since .1 =1,2,3....,n is continuous, it follows from the existence and unique-
ness theorem for an (IVP) for a system of first order differential equations, that

the solution of (1.2) and (1.3), and hence (1.11) and (1.12), exists and is unique.



This solution must be z* = f(z,¢) , which completes the proof.

From the theorem, we assume that a one-parameter (¢) Lie group of transforma-
tions is parameterized such that its laws of composition A(g,0) =&+ ¢

And e7! = ¢, where ¢ is the neutral element. That is the one-parameter Lie group

of transformations z* = f(z,e) now becomes;

& ofa")
with initial conditions z* =z, at ¢ =0 (1.13)

where a(z) is the infinitesimal of z* = f(x,¢).

Definition 1.2.9 Vector Field

A vector field C on a set D allocate a tangent vector C|x into every position x € D,
which are varying smoothly from position to position. In general coordinates
(x,...,2™) a vector field is expressed in the form Clz = ! (z)0/0x' +~2(x) /02> +

. 4+7™(2)0/dz™ in which 7 is a smooth function of 2 which can be differentiable

[27].

Definition 1.2.10 Commutator

If 77 and 75 are vector fields then their commutator also called Lie bracket is
defined as [Tl, Tg] = T1T2 — T2T1
Example

Given two vector fields expressed as:

T2 - xa:c + gy@%;
The commutator of these vector fields is
[T, 1) = (55) (w5 + Syar) — (245 + Syan) (42)

_ (9@ 92 gy)g@ »? .9 6, 0
= (%2 )8m+ 22t 70 )a Y80y — Ya:2 ~ 7Y8z0y
92

=2 432 +0+ 8 — a8y
ox2 7Y Ozdy Oz2 7Y Basay




Definition 1.2.11 Lie Algebra

A Lie algebra W is a vector space, on which commutation is defined and satisfies
the following properties:

(i) Closure Ty, T, € W such that [17,T5]) € W

(ii) Antisymmetry [T7, Ty] = —[Ts, T}]

(iii) Bilinearity [ki1T1 + koTs, T3] = kq[Th, To] + ko[T2, T3] and [T4, k1 Ty + koT3] =
k1|11, T5] + ko[T1, T3] where ky and ks are constants.

(iv) Jacobi identity [T4, [T, T3]] + [T, [T5, T1]] + [T3, [11, T2]] = O for all T3, T> and
T3 in W.

If [T1,T5) = 0 then T and T, commute and when all elements of W' commute, W

is known as an abelian lie algebra.

Definition 1.2.12 Solvable Lie Algebra

A solvable lie algebra W with the series that are derived as
WoW =[W, W]

SW' =W, W]

OW =W, W]

DR

S W = [W(a—l)’ W(a—l)]

such that W@ = 0 for some a > 0.



Theorem 1.2.2 Lie’s Second Fundamental Theorem

The commutator of some two given infinitesimal generators of a k-parameter Lie
group of transformations is also an infinitesimal generator, in particular

[wi, wj] = cwn (1.14)
Whereby the coefficients ¢f; are constants and ¢, j,n =1,2,3,... .k

For any given three infinitesimal generators w;, w;, w, it is always true that

[wi, [w), wn]] + [w;, [wn, wi]] + [wn, [wi, w;]] = 0 (1.15)
Equation (1.15) represents Jacobi’s identity.

For proof, see [28].

Theorem 1.2.3 Lie’s Third Fundamental Theorem

The constants, described by the commutation (1.2) satisfy the relations

Cij = Gi (1.16a)
Cli i+ Ch il + Chiciy = 0 (1.16b)

and [aw; + fw;, w;] = aw;, w;] + Blw;, wy], [w;, cw; + fw] = afw;, w;] + Blw;, w]
For proof, see [6].

Infinitesimal generators (w;) for i = 1,2,3,...,n described above, satisfy bilinear
property in the commutator equations given as

[aw; + Bwy, wi] = afwi, wi] + Blw;, wi,

(w;, aw; + pwy] = afw;, w;| + Blw;, w] (1.16¢)

Definition 1.2.13 Infinitesimal Transformation

Consider a one parameter transformation T = X(z,y;¢) and § = Y (z,y;¢) in
which ¢ is a continuous parameter. Expansion of this transformation using Tay-
lor’s series at the point € = ¢ yields

T=2+4(%).cp(c—e0) +...



T=y+ (G )eco(e —0) +- ..

Considering the group parameter € that is evaluated at € = g,the partial deriva-
tives are known to be infinitesimals and are functions of x and y. The study
expresses them as.

(%_);)6250 = &(xay)

(Z5)ezeo = A, 9)

Considering the values of ¢ tending closer to €y, the coordinates of the transfor-
mation can be expressed as;

T =z + pz,y)(e — o)

y=y+Mz,y)(e— <)

such that the terms of second and higher degree in (¢ — gg) have been left out.

Thus this transformation is known as an infinitesimal transformation [7,10].

Definition 1.2.14 Invariance under Transformation

An element or set of elements which does not change when its constituents change
is called an invariant. Its concept has a physical basis in the conservation laws of
mechanics. A function g is known to be invariant under a Lie group if and only if
9(T.y) = 9(X(2,y,8),Y(2,y,¢)) = g(x, )

such that when expressed in new variables, the function reads the same.
Rotation of a circle about an axis that is normal to its center is a good example

of invariance under a continuous transformation [7].

Definition 1.2.15 Symmetry

An operation which leaves invariant an object which it operates and a transfor-
mation which makes the object unchanged is called symmetry of a geometrical
object. Considering the transformation of infinitesimal form

Ti:xi—i—gaii:l,...,n



where ¢ represents a parameter of smallness. This equation can be expressed as
T, = (1+el)x;

in which

T = ai%

is a differential operator known as the generator of the transformation.
Regarding a particular case where

T=aZ+p2+22

Under the action of the infinitesimal transformation that is generated by 7', a
function g(x,t,u) becomes

9(z. t,u) = (1 +eT)g(x, t,u)

=g+e(ad + 5% +2%)

If the form of g is unchanged such that

agl+ %+ 2% =0

or

9. t,u) = g(x,t,u)

then T' is known as a symmetry of g. In mathematical terms, all symmetries rep-
resent invariance under transformations. Examples of these symmetries may be
reflections, translations and rotations which are referred generally to as geometric
symmetries. Nonetheless, there are symmetries that may not have such a simple

geometrical interpretation.

1.4 Statement of the Problem

The results of fifth order nonlinear wave equation can be analytic or numerical
when finite difference approach is used whereby the convergence of numerical sys-
tems depend on initial and boundary values given.

Hasibun et al. [14] applied a generalized Riccati equation mapping with the essen-
tial (G'/G)-expansion technique on constructing abundant travelling wave results

in a consistent manner for the fifth-order Sawada-Kotera equation but the results

10



were not easily realized since errors could be made when plotting the graphs. In
this study we have solved the fifth order Sawada-Kotera equation of the form

U+ 450Uy 4+ 15Uz Uy + 15Uz 30 + Uggzzs = 0 (1.1)
analytically using Lie symmetry analysis. The technique is among the most power-
ful approaches currently used to achieve precise solutions of the partial differential
equations that are nonlinear and the solution is independent of either initial or

boundary values hence is not an approximation to exact solution.

1.5 Objectives of the Study

1.5.1 General Objectives

The general objective was to find the general solution of the Sawada-Kotera equa-

tion, (1.1) using Lie symmetry analysis.

1.5.2 Specific Objectives

The specific objectives were to:

(i) Find the extensions of the generator and the total derivatives of the parameters
in Sawada-Kotera equation.

(ii) Find the infinitesimal generators and the groups in which Sawada-Kotera
equation admits.

(ili) Generate invariant and exact solutions of Sawada-Kotera equation.

(iv) Obtain symmetry solutions of Sawada-Kotera equation.

1.6 Significance of the Study

Nonlinear differential equations play a very significant function in the study of

physical phenomena such as fluid flow and electromagnetics. Sawada-Kotera equa-

11



tion is widely used to model applications such as navigation, mechanical waves,
sound waves, light waves and water waves.

The solutions of this study proof that Lie symmetry analysis is an alternative
method of solving the fifth order nonlinear wave equation and attempts can be
made to solve similar equations using this method. The study is the main contri-

bution to knowledge and further research.

12



CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

This study presented some results of the previous related research done by some
scholars.

Studies of PDEs and ODEs have been done by many scholars with the aim of
finding their exact solutions. Since the problems of differential equations are
encountered in both scientific, engineering and mathematical world, getting their
exact solutions is quite essential. Applications of several methods and approaches

have been done even though the results are not exhaustive.

2.2 Sawada-Kotera Equation

Hui et al. [16] developed nonlinear superposition formula used to construct Dar-
boux and Backlund transformations for super symmetric Sawada-Kotera equation.
Hui constructed periodic wave solutions using Hirota bilinear method basing on
the Riemann theta function given by Fourier series representation of KdV-Sawada-
Kotera equation.

Inc et al. [17] obtained many accurate and estimate solutions of fractional or-
der Sawada-Kotera equation. They applied shifted modified Chebyshev wavelet
technique and expansion method whereby such solutions were found through ex-
ponential, rational, trigonometric and hyperbolic functions. The procedure was
reinforced by numerical data and graphical representation.

Inc et al. [17] used Hirota bilinear method and the ansatz approach to con-
struct soliton solutions for Sawada-Kotera equation to obtain topological and non-

topological and multi-soliton solutions. The obtained solutions enabled them to

13



plot 2-D and 3-D figures using Mathematica 9.

Xiazhi et al. [38] derived nonlocal symmetries of the residual symmetry and spec-
tral function symmetry of Sawada-Kotera equation from the truncated Painleve
expansion method and Lax pair method. By localizing the nonlocal symmetries
of the original system to the prolonged systems of local ones, transformations of
Darboux and Backlund are obtained.

Olaniyi [26] considered time-fractional forms of the Sawada-Kotera equation and
the Ito equation by calculating the approximate solutions in the form of series
obtained by means q-Homotopy Analysis Method (q-HAM). Analytical methods
were compared with with Modified Adomian decomposition method (MADM), ho-
motopy perturbation method (HPM) due to the presence of fraction-factor. The
estimated results were compared with the precise results. Numerical solutions
were then obtained using Mathematica 8.

He and Geng [15] derived a sequential order of the new nonlinear evolution equa-
tions of the Sawada-Kotera equation where they introduced a 3 x 3 matrix spectral
problem having two potentials. This was done with the help of lax pairs. They
were also able to construct endless sequences of the conserved quantities of evolu-
tion equations.

Sh. Sadigh [35] solved Sawada-Kotera equation by means of the Adomian’s de-
composition technique. The other methods used were variational iteration and
homotopy perturbation. He also applied the modified processes of the techniques
used. The estimate results of the Sawada-Kotera equation was solved in the form
of sequence whereby its components were calculated using recursive relation. The
convergence of the proposed methods and the presence and distinctiveness of the
results were verified. He studied a numerical model to determine the exactness of
the used procedures.

Abdul-Majid [1] obtained multiple singular solutions for the Sawada-Kotera equa-
tion using the simple form of Hirota’s bilinear method.

Dai and Liu [8] used Hirota bilinear method to solve the fifth order Sawada-Kotera

14



equation in which the results showed the existence of various solutions of the equa-
tion which could be classified as one-soliton, periodic two-soliton and also singular
periodic soliton solutions. These solutions gave the exact soliton solutions of the
equation.

W.L and Yu-Kun [37] solved the Caudrey-Dodd-Gibbon-Sawada-Kotera equation
by introducing a A - modified equation. They used invariance property for the

equation under crum transformation to derive a new Backlund transformation.

2.3 Time Fractional Partial Differential Equation

Khongorzul et al. [21] used Lie symmetry analysis in the study of time fractional
partial differential equations which are termed to be nonlinear evolution systems
where a classification of group invariant, infinitesimal symmetries, a complete
group classification and the solutions were obtained. This was done by dividing it
into two cases based on the function contained. Infinitesimal symmetries generated
the dimension whereby in each case was greater than two hence presentation of
the arrangements and one-dimensional optimal systems of the Lie algebras. They
further obtained the reduced schemes equivalent to optimal systems and explicit
set invariant results for each case.

Manoj and Karanjeet [23] presented Lie point symmetries to solve time-fractional
Burgers’ equation. The symmetries were used to transform the equation into
an ordinary differential equation of fractional order which corresponded to the
Erdelyi-Kober fractional derivative. An invariant subspace method was then used
to provide an analytic solution.

Youwei [40] considered two classes of the general time-fractional Korteweg-de Vries
equations (KdVs) where an orderly analysis to develop Lie point symmetries of the
models were obtainable and comparison was done. This was done by transform-
ing both equations to form a nonlinear ordinary differential equation consisting of

different independent variable. A derivative that is equivalent to time-fractional

15



in the condensed technique was called the Erdelyi-Kober fractional derivative.

Gang et al. [12] used the Lie group analysis technique to find the invariance proper-
ties of the time fractional fifth-order KdV equation. They performed a procedural
study for deriving Lie point symmetries of time fractional fifth-order KdV equa-
tion. They obtained reductions in symmetry and the vector fields of the fractional
fiftth-order KdV equation by means of point symmetry. They therefore provided

some exact solutions using sub-equation method.

2.4 Linearized Differential Equation

Zablon and Sogomo [41] studied how to solve differential equations by symmetry
groups for first order ODEs by exploring the possibility of averting the assump-
tions in applications of Lie groups to differential equation. They found out that
solving the original ODE was much easier than getting the solutions of the lin-
earized symmetry condition (the symbols £ and n ). By inspired presumption,
or geometric perception, it was possible to determine a particular solution of the
linearized symmetry condition which permitted the integration of the original
equation. Solving differential equations involved some guesses and assumptions of

the form of symmetry for a given differential equation using Lie group symmetry.

2.5 Nonlinear Helmholtz Equation

Sakkaravathi et al. [34] considered the nonlinear Helmholtz (NLH) equation where
they described the beam transmission in a planar waveguide with Kerr-like non-
linearity considering the non-paraxial estimation. Using the optimal systems of
one-dimensional sub algebras, they determined the Lie point symmetries of ordi-
nary differential equations (ODEs) and their equivalent symmetry reductions by
applying the Lie symmetry analysis. Their analysis revealed significant informa-

tion that even if the original equation was non-integrable, its symmetry reductions
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were Painleve integrable. They analytically studied the solution sets of nonlinear
ODEs by getting explicit travelling wave solutions that included single and sym-
biotic single wave solutions by constructing the integrals of motion by means of
the adapted Prelle-Singer technique and also by carrying out an exhaustive nu-
merical study of the reduced equations with the aim of obtaining multi-peak non-
linear wave trains. They did compare the symmetries in the standard nonlinear
Schrodinger equation and that of the equation being studied whose symmetries

were since existing in the literature.

2.6 Nonlinear Wave Equation

Islam et al. [18] implemented the exp(—((&))-expansion technique in construct-
ing the precise traveling wave results for nonlinear evolution equations (NLEESs).
They considered two model equations which played important function in non-
linear sciences, which are known to be the time regularized long wave (TRLW)
equation and the Korteweg-de Vries (KdV) equation. They found trigonometric,
rational, hyperbolic and also exponential explicit function solutions of the vari-
ables in the chosen equations. They realized that the used technique was quite
effective and was virtually suitable for the aforesaid problems and subsequently
for the other NLEEs which arises in engineering fields and those arising in math-
ematical physics.

Aminer [2] used Lie symmetry analysis technique to obtain the exact results of the
fourth order nonlinear ordinary differential equation which was a one-dimensional
wave equation. The approach was efficient because the results did not rely on
both boundary and initial conditions and was not an approximation to the exact
solution. Therefore, the study employed a systematic process of developing vari-
ational symmetries, infinitesimal transformations, generators, integrating factors,
prolongations (extended transformations), adjoint-symmetries and the invariant

transformations of the model in question. The method was meant to lower the
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order of the model from fourth to first order, and was then calculated to obtain
the Lie symmetry result.

Bluman and Anco [5] obtained adjoint symmetries for the wave equation but they
did not attain much since the variational symmetries and also true symmetries
were not identified. They found all the integrating factors and their equivalent
first integrals for any given scheme of ODEs. The obtained integrating factors
were revealed to be all the results of both the adjoint scheme of the linearized
scheme of ODEs and also a scheme that represented additional adjoint invariance
conditions.

Fritz [11] dealt with Lie’s theory for solving second-order quasilinear differential
equations based on its symmetries applied for designing solution algorithms. He
supplemented the Lie’s original theory by different results that had been obtained
after his death one hundred years ago. This was right above all of Janet’s the-
ory [19] for schemes of linear partial differential equations and of Loewy’s theory
[22] for decomposing linear differential equations into components of lowest order.
The outcome allowed the formulation of the similarity problems that the were
associated with Lie symmetries and mainly, determination of the function field in
which the transformation functions act was considered as part of the problem.The
equation that initially had to be solved determined the base field, i.e. the smallest
field containing its coefficients. The fields that occurred later on in the solution
process were extensions of the base field and were determined clearly. The study
showed that a symmetric equation could be solved in closed form algorithmically
by transforming into a canonical form equivalent to its symmetry type by Liouvil-
lian transformation basing on the base field thus describing a solution algorithm.
Computer algebra software on top of the type system ALL TYPES availed so as

to make it easier to apply these algorithms to existing problems.
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2.7 Nonlinear Beam Equation

Dingjiang et al. [9] studied a generalized nonlinear beam equation which were of
second-order wave terms and fourth-order wave terms, that was prolonged from
the classical beam equation occurring in the past procedures of travelling wave
manner in the Golden Gate Bridge in San Francisco using Lie symmetry analy-
sis. They used the equivalence transformation group theory to carry out a total
Lie symmetry group categorization. They separated out from the classification
solutions the investigated Lie symmetry reduction of a nonlinear beam-like model
thus by ways of the reductions and representative calculation, some classes of pre-
cise solutions, as well as single wave results, triangular sporadic wave results and

normal results of the nonlinear beam-like equations were composed.

2.8 Nonlinear ODEs

Oliveri [27] presented Lie symmetry analysis of differential equations which pro-
vided a strong and essential outline to the utilization of orderly methods that
leads to integrating by quadrature (or at least to lowering the order) of ordinary
differential equations, to the obtaining of constant results of problems containing
initial and boundary values, to the deduction of conservation laws, to the creation
of associations among diverse differential equations that could be equal. Review of
some familiar solutions of Lie group analysis, including the current contributions
concerned with the conversion of differential equations to corresponding systems
that are important to study related problems was done.

George and Gregory [13] presented a theory for determining new symmetries for
ODEs which lead to an orderly reduction of the order of a differential equation.
They used a Backlund transformation to work out the Lie symmetries of a differ-
ential equation thus inducing different symmetries of the known equation which

were neither of contact, Lie nor of Lie- Backlund form. They obtained new sym-

19



metries and the equivalent new critical outcomes for a set of ordinary differential

equations occurring from nonlinear diffusion.

2.9 Nonlinear PDEs

Roman et al. [33] reviewed on finding a precise results of a set of reaction-diffusion-
convection equations consisting of exponential nonlinearities and through these
technique they the were able to look for Lie and Q-conditional also called non-
classical symmetries. They used two different algorithms to derive a total Lie
symmetry arrangement of the class so as to illustrate that the solution depended
basically on the type of correspondence transformations that are useful for the ar-
rangement. They also presented a total explanation of Q-conditional symmetries
for PDEs. It was revealed that all the renowned solutions for the equations with
exponential nonlinearities followed as exact cases from the solutions resulting for
the class of similar equations. They constructed accurate results of the related
equations by obtaining the symmetries that were then compared with those that
were established by means of different techniques and eventually presented the use
of the exact results for finding the solutions of boundary-value problems obtained
in population dynamics.

Roman and Maksym [32] studied a simplified Keller-Segel model by applying Lie
symmetry technique. They illustrated that a (1 + 2)-dimensional Keller—Segel
form scheme, jointly including the rightly-specified boundary and initial values
was invariant with regards to infinite-dimensional Lie algebras. They presented
Lie symmetry arrangement of the Cauchy scheme which depended on the initial
and boundary condition which were then used in reducing the order of the problem
to obtain a (1 4+ 1)-dimensional scheme. They further, verified that the Cauchy
method for the (1 + 1)-dimensional simplified scheme could be linearized then
answered in an explicit form by constructing accurate results of various (1 + 1)-

dimensional problems. They also established, motivated restrictions and derived
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Lie symmetry categorization of the (1 + 2)-dimensional Neumann scheme for the
simplified Keller—Segel system so as to get a single solution. Since Lie symmetry
of boundary-value model depend basically on geometry of the area, which the
problem was formulate for, they examined the realistic domains. Reduction of the
Neumann scheme on a band was determined by means of the symmetries obtained
so as to find an accurate result of a nonlinear two-dimensional Neumann system
on a set period.

Andronikos et al. [4] analyzed two sets of (1+42)(1+2) evolution equations that
were of particular concern in Financial Mathematics, such as the model for the
Two-factor Commodities schemes and the Two-dimensional Black-Scholes model
using Lie Symmetry Analysis. They studied problems for the case that were
independent and those whose parameters of the equation were indefinite func-
tion of time. Thus in the independent Black-Scholes Equation, they established
that their symmetry was maximal hence the equation could be reduced to the
(1+2)(14-2)Classical Heat Equation. It was different in the example for the de-
pendent equation whereby the amount of symmetries was submaximal. Consider-
ing the two-factor equation, it was found out that the quantity of symmetries was
submaximal in independent and also in dependent situations. When the resulting
symmetries were applied to reduce the order of each of the schemes to obtain a
(1+1)(141) equation, the resultant scheme was of greatest symmetry and hence
equal to the (142)(1+2) Classical Heat Equation.

Roman and John [31] proposed an innovative description of restricted invariance
for boundary value schemes which involved an extensive series of boundary condi-
tions. It was revealed that further descriptions were workable in finding Lie sym-
metries of boundary value schemes through normal boundary conditions which
followed a specific examples from definitions. They established that the study was
applicable to the nonlinear problems since they were able to solve simple examples
that were arising in systems. They realized a thriving use of the description for

the Lie and restricted symmetry arrangement of a set of nonlinear boundary value
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schemes that were of (1 4 2)-dimension which were administered by the nonlin-
ear diffusion model in a semi-infinite field. When the scheme in question with
non-diasppearing change on the boundary admitted extra Lie symmetry mecha-
nisms linked to when k # —2, it was established that there was a unique model,
k # —2, for the power diffusivity u* thus were useful in reducing the nonlinear sys-
tems with power diffusivity ©* and an unvarying non-zero change on the boundary
which was ordinary in uses and described an extensive series of phenomenon to
(1 4+ 1)-dimensional systems so as to reveal the applicability of the resulting sym-
metries. After analyzing structures and properties of the problems obtained, they
presented a number of solutions representing how Lie invariance of the boundary
value scheme in the study depended on the geometry of the field.

Aminus [3] considered Laplace equation on surfaces of revolution and discussed the
symmetry algebra based on classical Lie symmetry theory. Symmetry reductions
were applied in order to obtain new harmonic functions on surfaces of revolution
using the Lie point symmetries.

Juan et al. [20] found explicit results of nonlinear Schrodinger equations that have
spatially inhomogeneous nonlinearities by means of Lie group theory and also
canonical transformation. They presented the general theory, thus used it to solve
diverse models and used the qualitative theory of vibrant schemes to find various
properties of those results.

Popovych [30] discussed the reduction operators of the linear parabolic partial
differential equations and provided theoretical results on some transformation and
reductions for determining equations. His main result was a series of ‘no-go’ the-
orems concerning symmetries that did not lead to new reductions.

Oduor [25] solved Burgers equation,u; — uu, = Au, which is a non-linear PDE
arising from model study of turbulence and shock wave theory. He determined all
the Lie groups admitted by Burgers equation and used symmetry transformations
to establish all the global solutions corresponding to each Lie group admitted by

the equation.
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Nucci et al. [24] used role of symmetries to solve differential equations, hence show-
ing the solutions on the use of classical lie point symmetries in solving equations
involving epidemiology of nutrition and meteorology. The iteration of the scheme
yielded new non-linear equations that inherited the lie symmetry algebra of the
specified system. The invariant results of the non-linear equations formed gave
new results of the initial equation.

Omolo [29] used lie symmetry analysis of differential equations in solving nonlinear
differential equations. He gave a stability approach to exact solutions of non-linear
PDEs provided by the symmetry groups.

Despite the fact that so many scholars did much work in Sawada-Kotera equa-
tion, the solutions obtained were approximate to the exact solutions. To fill the
gap, Lie Symmetry analysis provided exact symmetry solutions of Sawada-Kotera

equation.
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CHAPTER THREE

METHODOLOGY

3.1 Introduction

This chapter precisely illustrate the techniques and procedures that were applied

in solving equation (1.1).

3.2 Groups of Transformation and Infinitesimal Transfor-

mations

The study generated infinitesimal generators, infinitesimal transformations and
the groups in which the equation admitted.

The groups of transformations required were of the form;

x* = X(x,t,u;¢e) (3.1a)
t* =T(z,t,u;¢€) (3.1b)
u* =U(z,t,u;e) (3.1¢)

and their corresponding infinitesimal transformations «, 5, A in which

afw,t,u) = Z&bu) (3.2a)
Bz, t,u) = L&Lw)) (3.2b)
Az, t,u) = WE:O (3.2¢)

3.3 Using Lie’s Integrating Factor

The study uses the solutions of adjoint symmetries of the linearized PDE which act
as integrating factor by applying theorems that show the link between infinitesimal

symmetries and integrating factors. Such theorems are stated as follows:
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Theorem 3.1

Consider a first order differential equation represented in the form of symmetry as
Q(z,y)dz+R(z,y)dy = 0 (3.3)
Lie showed that (3.3) admits a one- parameter group P with the infinitesimal gen-
erator expressed as

G = Bla,y) gt M2, y) 5 (3.4)
where # and A are functions of x and y only.

Thus equation (3.4) is a symmetry for equation (3.3) and

8= (BQ+AR)™ (3.5)
is called Lie’s integrating factor for equation (3.3) provided that

BQ+ AR #0

Example 3.1

Considering the Riccati equation of the form

y+yP—%=0

We re-write it in the form of equation (3.1) to obtain

dy + (y* — Z)dx

Substituting 8 = z,y = —v,Q = 3> — x% and R = 1 we obtain the integrating
factor

¢ = oz

On multiplying the Riccati equation by this integrating factor we obtain

xdy+(xy?— %)dm
z2y2 —xy—2

=0

We then re-write in the following form for integration to be done

_ xzdy+tydx + dz

T r2y2—xy—2 T
= d(lnx + %lniiﬁ) =0

and finally we integrate to obtain
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3zy—2 __
=T zy+1 k

thus to solve for y, we find the solution of the Ricatti equation as

2234k
Y= z(x3—k)

where k- constant.

3.4 Invariant Transformation of Differential Equations

The study applied infinitesimal transformations in constructing the solutions of
differential equations.

This was actualized by considering systems of differential equations and showing
the infinitesimal criterion of their invariance.

The results of the algorithm were used to find out the infinitesimal generators
represented by the equation.

According to Olver [28], invariant surfaces of the corresponding Lie group of point
transformations lead to invariant solutions (similarity solutions).The solutions
were obtained by solving partial differential equations with fewer independent
variables than the given PDE.

First, we consider a k' order differential equation of the form

F(z,u,uy,us, ug, ...... Jug) =0 (3.6)
where © = (21, T9, T3, ...... , T,) denotes n independent variables, u; denotes the set
of coordinates corresponding to all the j** order partial derivatives with respect
to © . We assume that the Partial Differential Equation (3.6) can be written in
solvable form in terms of some & order partial derivative of u .

F(x,u,uy,us, ug, ...... JUk) = Uiiigigis...i; —f (T, U, Up, Uz, Ug, ... Jug) =0 (3.7)
where f(x,u,uy, us, us, ...... ,uy) does not depend on g, iyiyiyis....i;

We now give a criterion for the invariance of a partial differential equation by

stating the theorem below [6].
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Theorem 3.2

Let F,(z,u®) = 0 be a non-degenerate system of differential equations.
Let V = a(x, u)(%;l—A(w, u) 2 be the infinitesimal generator of the one-parameter

Lie group of transformations given as

¥ = X(z,u;€) (3.8)
u* = Ul(x,u;e€) (3.9)
and let

V) = q(x, u)a%ijt)\(% u)%—i—)\gl)(x, u, ul)%%—...—i—)\g@ﬂgmik(:)j, U, Uy, U, U3, ..U )

8
OUiyigigigig... iy, (310>

be the corresponding k' extended infinitesimal generator where

M = A, y)

is given by
and /\5222-31-4145.% is given by
k k—1
)‘2(1221'31'4”&5...2' = Dik>\1(1i2z’3)i4i5...ik—1 o (DikAj)uiliﬂSMmikfl (312)

i; =1,2,3,..,nfor, j =1,2,3, ..., kwithk = 1,2,3, ... in terms of (a(z, u), A(x, u)).
Then one-parameter Lie group of transformations (3.8) and (3.9) is admitted by

the partial differential equation (3.6) if and only if

VOF,(z,u,uy, ug, us, ..., ux)] = 0,a = 1,2,3,...,1 (3.13)
Whenever
F(z,u®) =0

3.5 Lie Point Symmetries

The study describe Lie point symmetry as a point that depends continuously on at
least one parameter since the parameters can vary over a set of nonzero measure.

The Lie point symmetries of PDEs are represented in the form

G=al+p2+12 (3.14)
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where «, f and \ are functions of x,t and u only.

For us to be able to apply a point transformation on our equation there is need

to know how the derivatives transform in the infinitesimal transformation

T =x+¢ea(z,t,u) + 0(c?)

t=t+efB(x,t,u) +0(c?)

u=u+e\xz,t,u)+0(c?) (3.15)

whose generator is known to be

GO = a(z, t,u) Z4+B(z, t,u) 2+ Nz, t, u) & (3.16)
We also find the first, second, third, fourth and fifth derivatives of T and ¢ then

find the extensions/prolongations of the generator G.

The prolongations of the generator from the first to the fifth are: [28§]

all — G[O]Jr)\tiJr)\xi (3.17)
G = Gl p# 2 )\trai )\M&?L (3.18)
GBl = gl )\ttt 8 + A\t (%8“ + )\tazx 8 + PRz auim ( 3. 19)
GH = GBI\ttt 813“ S\ttt &L?m 4 \ftex 8ui — {4 \fwaw Gui — J \TaTT - i — ( 3.20)
Gl — Gl 4 p\tutet_0 (%tmt 4\ttt ﬁ \ttee ﬁ \ftzze m \tezae ﬁ
Azxxxxﬁjzzz (3.21)

Where the terms\?, A%, A \**%__are coefficients and are generated and expressed
in terms of partial derivatives as shown below

A =2 4 22 L from d(A = 2dx + (22)du} hence

Dy(N) = A +uzg Ay 2 ANz, t,u) (3.22)
a® =92 4+ /%2 £ from d(o = 22dx + (92)du} hence

Dx(a) = Qg + ugy, - ax,t,u) (3.23)
p* = —|— u aﬁ { from d(f = aﬂdx + (aﬂ)du} hence

Dx(ﬁ) = By + ugfBy : Bz, t,u) (3.24)
A= 2 4 /2 L from d(A = 2dt + (2)du} hence

af =92 44/ %2 { from d(ov = %2dt + (92)du} hence

Di(a) = oy + wpavy,) (3.26)
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Bt = % + ul% { from d(8 = %dt + (%)du} hence

D.(8) = Bt + uB (3.27)

N'= (B2 g 92) o (G g g By
Z%—i—u’gj—a’\m—ku”g—i—l—u’;j—a’\x—l—uﬂ%—ko

= % + 211’(9‘9;—6)‘z +u” ‘9 )‘ +u”‘9’\ hence
D?:()‘) = Ao + 2Up Az + Uge Ay + u?g)\uu (328)

O//: ( +u/6a)+ ( +u/aa)

_ O%«a 1 9%« " dar 12 9%«
- 2+U’8u8x+u +u6u3x+u 8u2+0

8x2+2 /8a +u/8a+u//8a hence

dudz
D?c(a) = Qg + 2UpQyp + Ugp Oty + u?gauu (3.29)
B = L9 9By 4 L (9B LYy
826 2 028

_ 198
— 922 +u6uax+u +u8uam+um+0

— DBy 0 0% +u’2% +u”% hence

Ox2 Oudzx
D2(B) = Brr + 2us Buz + UaaBu + U Bun (3.30)
= B B ) B B )

793 9%\ 9%\ 9%\ ///6)\ 293\ 1, 1192\
813 +2u Oudx? + 2u Oudzx tu Oudx +u Oudzx +u + u Ou20x + 2u'u o2 +

/8)\ +2u/2 250N +0+u1 /18A+0+ul35’>\+0

8u8x2 Ou?dx

_ 33 / 8 "n_ocn ///6)\ 12_93) / //8 )\ 1393\

— 9z° + 3u 2 + 3u dudz tu + 3u Ou?0x + 3u'u 2 tu Ou3
Hence

4) _ d 193X "9\ ///8>\ 2 93X 1, 1192\ 393N
)\( ) = (8x3 + 3u Oudxz? + 3u Oudzx +u + 3u Ou?0x + 3uu o2z +u W> +

rd (93X 193\ 9%\ ///8)\ 2 93\ / //8 >\ 393\
E(W+3 Oudzx? + 3u Oudx tu +3U ou20z + 3u'u s tu W)

_ ot / " 8 D) 7 8 A 7 m_92x (4) 8x 8/\ 12_9*\
5 +3U 50 3+3“ 507 U 5,5,7 T3U 8u8x+u duts T gy T3U” guzg +

1o 9PN " / ///8 A 12 92\ u'3 Ot 2 //8 >\ 1 9%
6u'u” 575, + 3u'u 828 +3uuTGe + 3uT e + Ut g ag, + 3utu T U T

4
//6 >\+ /48>\

/
2u ot

4
31/281?26)\12—'_3“, " 8)\ + / ///8)\_’_3 13 8

_ 84)\ + 4y AP + 6u” 3\ + Ay 2\ +u() _'_3u/2 [P + 9w/ 33\ +

Oudz3 Oudzx? Oudzx Ou?0x? Ou?0zx

4u/u///6 A + 3u //28 +4 13

1o 9PN 14 94\
+ 3u'u u28x+u ot

+ 6u/2u//8 A + 3u 2

u38x u28:p2
Hence we have
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A =& [0x4 +4u! 80/9\;3 +6u” 82?)2:2 +du ma%z?x +ul %+ 6u” 8@?248/\ z + 120" 832?996) +

//28 /\ / ///6 /\ 13_0*\ 2 //83>\ /46 A 1d (94X N n_93)\
3u 2 +du'u 2 +4u 8u38z+6u U s tu ]+U du[8334 +4u Oudz3 +6u Oudz? +

4y 8)\ +u(4)8A+u 4)8A+6 2 26 2+12 " 823 +3u //22 é\+4 / ///g 2\4_4 3 u3az+

2 //8 A 494
ou'“u ] +u W]

/ 8 >\ 1_9*\ _9*\ m_03\ m 8 >\ (4)_0
- 815 + 4du dudz? + 6u dudx? + 6u Oudz? + du 7 +4u 6u8w +
(4) 02X (5) OX 12_8%) 1,00 " 12 8 /\ m_93x
U Sudx +u ou +6u Ou?dx3 +12uu 8u28x2 +12utu 282:2 +12u —|—12’UJU Ou?0x +

44’y 3\ OA 4 Ay ///8 A+4u u( )%_'_3”//2 161" u 1 92 A+6u/2 1_0*\ OA 1199/ 2 93 A+

ou2dx ou 28 ou3dx
129,11 83>\ 13 9\ 2D 13 //8 >\ / 2 9%
Gu o3 T4u 38 7+ 12u2u” 5550 +u” grag; TAuP U g 8u28x4 +4u” gasm +

4
6u'u ”6 28 - + 44" 8 )\ + uu(4)8 A =+ 6u /38 o 4 12u/2u//823gx 4 4u/2u///8 A 4

’ //28 >\ 13 //8 >\ 14_9%) 15 9%\
3u'u + 6u”u" g5 + du" 555 + UGS

A 4 02 —l—lOu’2 2 .

Ou?0x3

_ gi)\ 5u’ 32X + 100" 9*\ + 10u™ fokP _|_5u()

Oudz* Oudx3 Oudz* Oudzx

1, 12 _93\ 101 _ 93\ " ///8 /\ ()@ 12,11 _9*\
30u'u" 5= 28 92 1150 329, T 20u'u" 555+ 10u"u 5+ 5u'u 52 +30uu" 5555 +

1500293 + 100" 3% + 10uP 5225 + but 525 + 10uPu" 85 + w52
Hence
D3(N) = Nowaae + St Auzwae + 10Uz Muaws + 10UzzeMuse + Dllzzzetue + Unzwoe A +
102 Ayuzzs +30Ug Uy Az + 15Uz Adyua +20Up U p Az 10U Usprw A+ DU U A+
10uz3 AyuuzeF-30Uz2 Uze Ay 19U Ugz2 Aduua+10Uz2 Uggp Advurn 5 U4 A +10Uz3 U A+
U5 My (3.33)
The terms Y, A%, A*® \®** and \***%% are the coefficients and are generated and
expressed in terms of partial derivatives as shown below
A= D\ — w D3 — uy Dy

= A + Wy — Uy — UpQp — UgUyary — U2y,

= N+ u( Ao — Br) — Uy — gy, — ulfy, (3.34)
AN = D\ —u D0 —uy Do 8

= Ao + Uy — UgOy — UPA — UsBy — Uty By

= Ao + Uz (N — ) — Uiy, — w By — ugueBy (3.35)

At = D?O\ —z —t) + Qugy + Buyy

= /\tt + (2>\ut - Buu)ut — Oy Uyg + ()\uu - 2But)u? - 2autu:cut - Buuu? - auuu:cutz +
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Ay — 268w — 200 — 3Bttty — 200Uty (3.36)
Nx = D2\ —u, D2 — uy D23 — 2upx Dypcv — 2uut DB = Apy + 2Ug Az + Ugz Ny +
US Ay — U Oy — 205 Oy — U U Oy — Ui gy — Uy B — 20Ut B — U Ut By — U U Brs —
QU Oy — 2Ug Uz Oy — 2Ugt B — 2Ug Uy By

= Ape + Uz (2 — Qz) + Upe (A — 2002) + U2 (A — 2000z) — SUg Uy — US Qi —
UtBoe — 2UgUtPuz — Uza sy — u?gutﬁuu — 2UgtBe — 2UgUgt By (3-37)
N2 = D3N —u, D3 — uy D3 — Bty D20 — 3t D23 — 3o Dot — 3Uger Dy
= Npwz + 3z Mz + sz Nuz + Upze A 4 302 X + 3aUipg A + U Ny — U —
BU2 Qg — BUplypOlyy — UgllgapQty — BUS s — SURUgg Q. — Us s — Ut Soze —
Bty Ut Buze — Ba Ut Buz — Unwatis Bu — 3UpU Buuz — g U U B — U B — B Qg —
6 U Ctuz — U2, oy — DU U Qs — Bt Bz — Ot B — Bt Uept By — BB B —
BUgga Oty — BUglaraOty — Bagt e — BUaligatBu (3.38)
N2 = DAIN — Do — uy DB — dug D3 — gy D38 — Aty D2 — 4y D23 —
WMy Dp — Azt Do
= Aawar + U (4 uzze = Qazor) + Uze (6 Auze — 400a0) + Uzee (4hue — 400 ) + Upgae ( Ay —
davg ) +u (6 A yuze —40uzez ) Uz Uzr (12X 00 — 18uae ) 2, (3N — 12002 ) Hp U (4 i
12000) + U3 (4 vwuuz — 60uuae) + Uatae (6Auuu — 240uue) + Uy (Awwuu — 40uuuz) —
Sy Ugan Oty — 15Uz U2, Oy — SUZ Uz Cuy — 10U Ugr Oy — U Qs — Sl Uz Qs —
utﬁmﬂrzw_4uxut6uaza::c_6uxxutﬁua:x_4uxxxutﬁux_ux$$xut/8u_6uiutﬁuuxar—12uxu$xutﬁuuw_
302 Ut Bun — AUzt Buy — AU Byuue — OULUze U Buwy — Uptt Buwun — Yot Braa —
1203 Ut Buze —12Uag et Buz —Atgae et Bu— 1205 gt Bune — 12Ua g Ut Buu— 403 Ut B —
Wyt Brw — BUaUprt Buz — HpaUaatBu — 4Uiumxtﬁuu — Mt Be — MUgUsaat By (3'39)
NP2 — DS\ — 1, D3 — uys D3 3 — By Dt — Dy D2 B — Bttype D3cv — Bty D33 —
SUgraa D30 — Bllgeat D2 — Sgarae Dt — SagaetDafl = Apgawa + Ua(DNugaca —
Qaezar) T Uze (10 uzee — 5are) + Ueee (10 uze — 5Quee) + Urgae (DAue — H0za) +
Ungzze(Au — 50s) + U2 (10 wugs — Dugzas) + U3 (10X uuuse — 100uueas) + Ub (5 A wuuus —
100wz ) + U2 (Avwuun — 5Cuuuuz) — U Cuuun + sy (15X uue — 300tg,) — 15U3, 0ty +
U Uz (30 A yuze — 300uzae) + Uplare (20 \uue — 250uzs) + Uslipzze (DA — 1500 ) —
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U2, (15 g — T9Quuz) + U2 Uzze (10 A guy — 35Quuz) + U Uze (10 A guuy — 50Quuue) —
45U Uz U Qs — 10U U g0 Oy — 45U U2 iy — 15U U Qs — 15U U s —
502y 0 — Ui Branar — DUattBurzne — 10UzptUtBuzee — 10UznteBuze — DUpzaatteBus —
Up 222U By — 100U Buurze — 30UaUaats Bunae — 156704 Bune — 20U Ugats Bunz —
10U U Ut B — 5Uia U Ut B — 10U Ut Brinie — 30U i Ut Buviie — 15U 02, 04 By —
1002 Ut B — DUy s Brursrize — L OU Ui Ut Brvnsirs = Ut B — DUt Bwarw — 20U Ut B —
30Uz Uat fure — 20UspalotBus — SUnzratatBu — 30UR Uzt Bunae — 60UpUsntsr Bune —
1563 Ut Bu. — 20U UrgUont B — 20U Ut Bz — 30U U Uept B — DU Uit B —
Szt Brae— DU Uzt Buze— 15Uz Usat Bus—Naza Uzt Bu— 15U Uzt Bune — 15U s Ut Bu—
5U Ut B — Dzt B — 10UaUprt Buw — Dl Ut B — DUt Buws — Szt B —
5Uy Uzt Bu (3.40)
Symmetry for third order Partial Differential Equation

In order to find the symmetries of the following nonlinear third order PDE

Up + Upgy + Uty =0 (3.41)
We need to find its infinitesimal transformations, infinitesimal generators and all
the groups in which it admits.

This system of equation arises in the theory of long waves in shallow water and
other physical systems.

The necessary symmetry groups of transformations are of the form

= X(z, t,ue),t* =T(x,t,u;e),u* = Ul(x,t,u;e) (3.42)
with equivalent infinitesimals

alz, t,u) = szo,ﬁ(gﬂ,t,u) = %kzo, Az, t,u) = %E:O

We then let the generator G, of (3.41) be of the form

G = oz, t,u)2 + Bz, t,u) g + Az, t,u) 2 (3.43)

We work out all the coefficient functions «, 3, A so that the equivalent one-parameter
Lie group of transformations z* = X (z,t,u;¢),t* = T'(z,t,u;¢),u* = U(x,t,u;¢€)
form a symmetry group of (3.41).

Since the equation is a third order differential equation, we use the third extension

(prolongation)
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GP = a(z, t,u) 2 + Bz, t,u)2 + /\(x,t,u) + AL AT -+ MO \tw_0_ 4

Ut autt 8utz

)\xac 3 + A\itt_0 o) 4 MNite_9_ 2] T )\ta::c 4 )\zer_0

Outtt OUttsr 8'U«a:zz

When GP acts on the differential equation (3.41), we obtain
Gl uy + gy + uty] = 0 (3.44)

Equation (3.44) becomes

O[(l',t,u)i"—ﬁ(l‘,t,U)%‘f‘)\(l',t,u) +At _’_)\x —f—AtI +)\xx —|—)\ttt8um-}-
At auatt + )\t:m: 3 + /\x:ca: ][U/t + Uppy + uum] =0 (345)

This can further be simpliﬁed to give
afr,t,u) 5 0 ~ Uy + Ugae + uty) + Bz, u)Z 5 [ut + Ugge + wtiy] + N, t u) + [ug +

Uty ] + N7 52 [ut + Ugge + Utly] + A 8;2” [ut + Uggr + Utly] + AN 2— au“ [ut + Uy +
utg] + A j [Ur + Uae + wtiy] + A" 52— = 0 (3.46)

Then we differentiate partially with respect to the partial variables uy, w,, Uy, Uz, Uzs,
WUgpt, Utz Utze, Uzze aNd T, 1, u as algebraic variables.

Which yield the infinitesimal of the form

Ay + Au 4 AF 4 AT (3.47)
which must be satisfied ensuring that v; = —u,,, — uu, whenever it appears in the
equation. When (3.34), (3.35) and (3.38) are substituted into (3.47) we obtain:
At — 0yt + (A — Br)ue — iy — Buut + U A+ u[ Ay — Bt + (A — )y — Oéuug -
Buttttz] + Ausz + 3 Az + 302 Az + 3azdus + U3 Ay + 3tz Ay + Ugz Ay —
3 (B + 3 BULL 4 3U2 Bunie + 3 Buie + 3o By 12 Brs Ui Bu) — 3 Qi+
3 QUTT + U2 Qg + 3 Qe+ 3Up U Qs +US Qs + Uiz Oy ) — 3t (e + 22U T +
U O+ U3 ) = Bt (B + 20 UL A+ B 07 Bus) — B (00 ) — Bt (B
Uz Bu) + Ao — i (M)t — tizuy — Byt — [Aaw + (200 — 0 )y — Braty + (A
20030 ) U2 — 2Bputizptly — QS — Buuti2ty + Ay — 2000 )Uze — 2BpUst — 3 Ugllzy —
Butigtzy — 2Byugugt] =0 (3.48)
When we replace u; by —u,,; —uu, whenever it occurs in the equation, and equat-
ing the coefficients of the various monomials in the first, second and third order

partial derivatives of u, we obtain the resulting determining equations for the in-
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finitesimals for the equation (3.41) to be

Table 3.1: Determining Equations for Third Order PDE; Equation

(3.41)

Monomials Equations Equation number

Ugat B+ uzfy =0 (i)

Ura Bu=0 (i)

u?, —3a, =0 (iii)

Ug Uzt Bu=0 (iv)

Uzl a, =0 (v)

Ugy 3Upr = 3\ux (vi)

Ug Uy y + 3w — 150, =0 (vii)

u? 3 = 0 (vii)

Uy A—ap+ (A —az)u+ 3N =0 (ix)

1 Azza + UA A =0 (x)

Results of equations (i)-(x) produce the infinitesimals a, 5, A as given
below
a = c1 + c3t + eyx (3.49a)
B =cy+ 3eat (3.49b)
A =c3+ (—2cqu) (3.49¢)

We write «, 3, A in the standard basis form as follows
a=1.c4+0.co+tcg+1l.cyxr =c1+ cst + cax

B =0.c1 + 1.co + 0.c3 4+ 3.c4t = o + eyt

A =0.c14+0.co+1.c3—2.c4.u = c3+(—2c4u) (3.50)
We then formulate the equivalent Lie algebra of the basis generators vy, vy, v3, v4
in (3.50) of the form

v = O‘ia% + BZ-% + )\i% s« B, X\ are the coefficients ¢; in the standard solutions of

a, 3, A. Thus the v;;7 = 1,2, 3,4 are obtained from the presentation in equation
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(3.50) as given below
(1 :a%,vzz %,U3: %—l—t%,m:x%—i—&%—%% (3.51)
The Lie groups admitted by equation (3.41) are determined by solving the corre-

sponding Lie equations which yield groups as shown below

v = 2:Gy o Xz, tuye) = Xq(z+e, t,u) (3.52a)
vy = at,Gg X(x,t,use) = Xo(z,t4e,u) (3.52b)
vy =2 +t2:Gs: X(,t,use) = Xs(z+et,t,ute) (3.52¢)
vy = 4368 — 2l Gy X(z,t,use) = Xy(efx, €%t e % u) (3.52d)

Lie symmetry analysis for Boussinesq Equation

The Boussinesq equation is a fourth order nonlinear partial differentiation equa-
tion written as

Tt =aft + B + 4 @59
where «, 5, A non zero- real parameters.

We determine its infinitesimal transformations, infinitesimal generators and all the
groups it admits. The required groups of transformations are of the form:

= X(x, t,uye), t* =T(x,t,u;e),u* = Uz, t,u;e) (3.54)
with conforming infinitesimal transformations «, 8, A where;

alx, t,u) = %]5 =0,

Blx,t,u) = P~ 0,

Az, t,u) = S5 — o,

The infinitesimal generator of (3.53) is given by

G = o(x,t, u)g% + B(x, t,u)% + Az, t, u)% (3.55)
with first, second, third and fourth extended/prolonged generators respectively as

G =G+ )\t(a:,t,u,ut,ux)aiw + N (@, t, u, uy, Um)%

0

2 1 tt o) t
G( ) = G( )+)\ (x7t7u7ut7u$7utt7ut1’7u:ﬂx)6u“+)\ x(‘ratﬂvlﬂutauxauttautzauxm)amz

TT 2]
)\ (iL‘, ta U, Uty Ugy Uty Utgs uff)@udu

3) — (2 tit ttx t:)::): rxT
G - G + /\ 3Uttz + )\ 8Utt + )\ + )\ auzzz

4) — n@®3) tttt 0 tite __ 0 ttxx __ O txzz 0 zzzT 0
G o G )\ 8utttt + )\ Outttx + A Outtrz + )\ Otz + )\ o Trm

where At A%, A% \%% are known functions of the derivatives of o, 3, A and variables
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Uy, Ug, Uge, Ugz, Uz iN Which the subscripts denote partial differentiation
From (3.53), V = (ug — Qg — BUzzze) — 2d(u2 + utiye) = 0

By theorem 3.2, we have

GOV = G |[(uy — gy — Bllages) — 2d(U2 + utiy,)] = 0

Thus we express this to obtain

[0+ B8+ AT+ N A7 NS g Ny o O A“tafm SR T
>\ta::c 3 _|_)\zxx 3 +>\tttt au(fjm +)\ttt:c &Zt o )\t 8uim _|_)\tzxx aumm 4 \zreT Bumm] %
[(wer — Qg — Bmm) —2\(u2 4 uty,)] = 0 (3.56)
The infinitesimal condition (3.56) reduces to equation,

AT — 2d Mgy — Adug N* — (o + 2du) A" — A5 = () (3.57)

with A% A%, \%% \*%2% defined explicitly as before

Substituting equations (3.35), (3.36), (3.37) and (3.39) into equation (3.57), we
obtain the equation of the form

[Aee + (2t — Buw) e — Qurtir + (201 — Bun ) U5 — 2001150y — 5uuu? - Oéuuua:uf + (A —
2By — 200Uy — 300 Uy — O Uz Uy — 200, Ug Uy — 2d MUy — Adtug { o — Bty + (A —
Qg )y — 2 — By, b — (a4 2du) Mgz + (2A 00z ) Uz — Loty + (Auu — 200, )u2 —
2Bautictly — Qs — Buutiaty + (Au — 200)Uge — 2Bplar — 300,Uglay — Bullilips —
2Butiptat] — Bl=dpza{ e + Uz} — Aupat{Br + UeBu} — Aiga{Cus + 2uz0ry, +
Usa Oy + Ug O} — Ayt Bra + 200 Bz + UswBu + U3 Bun} — At Buwa + 3ueBuze +
302 Bue+ 3 Bua +3Ua e Buu~+ U5 BunuF Ueaw Buz } —Mlaw (Qage 3t Qyra +3U2 Qs+
By Qs+ Bl Uiy Qs 1 Qs + Uiprw ) + { Az + Uz Az + 3 (U A + U A +
U2 Aguze) + 32Uz Uze Aduue + U2 A puuz + U Mz ) F (302U e Ay + U3 A g + U N ) +
(UazzzAu + UszeAau + UrlzzeAun) + 3(Uzza iz + UzzApus + Ualas Aua) + (U, +
Ug U ) A+ U U Az + Ul AU) } — Ui Bz + e Puzaa + 3(Uza Buza + e Bouua +
2 Bua) +3(2Ua U Brue U5 Bunua) + (312U Burss 03 B+ 1 B+ (U B+
Uz B + UnUaze Bun) + 3(UazeBuz + Uz Bruz + Uallae Buuu + 3((W3y + UgUpy B +
U U B+ U Ui Buwns) } = U { Qe + U Qe + (U Qe + U O + U3 Qi) +
3( 20 Uy iz~ Uy Qs ) F (BUF Ui Qi U3 Qi Uiy Qi) + (Ui O+ U Qs +-

3
Uy Uz ) + 3 (U Qe + U Cpir F U Uiy Qs + 3((U g+ U Ui Oy F+ U Uy Qs +
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Uz ) } — Yot (Brza + 3z Buze + 3U3Puue + 3taaBus + 3atlowBuu + U3 Bunu +
U Bu) = Wb (O F-B3Uip Qi 30 w3y Qe 3 U Qg U Qs U )| =
0 (3.58)
whenever (uy — QUgy — Blgees) = 2d(u2 + Uty

When we equate to zero the coefficients of the monomial terms, we obtain equa-

tions in the partial derivatives of infinitesimals «, 5, A which yield:

a = mg + max (3.59)
B =mq + 2mst (3.60)
A =mglr + 2t — (§ — 2u)] (3.61)

The infinitesimal generators v; are obtained to be

vy = %,'Ug = a%,vg = Qt% + x% —[§ - QU]Qt% (3.62)
The terms A, A%, A \*%%% in the prolongation of the generator are expressed as
functions of «, 3, A, u.

The one-parameter groups GG; admitted by the infinitesimal generators, v; are de-

termined by solving the corresponding Lie equations which yield groups as

follows:
v = g3 G X(a,tuie) = Xa(a, t+e,u) (3.63)
vy = 2 Gy X(z,tuje) = Xo(z,t + €, u) (3.64)

vy =2t + o —[2 = 2u]L; Gy 0 X(x,t,u;6) — Xz(e*w, e*t, (€* — Sa)u) (3.65)
where a is arbitrary solution of the fourth order nonlinear Boussinesq equation.
These groups above are all trivial groups given as:

Gr: X(z,t,u;e) = Xq(x, t +e,u)

Go : X(z,t,u;e) = Xo(x, t +e,u)

Gy X(x,t,u;e) = Xs(efw, e*t, (e — Sa)u)

Lie symmetry analysis of the Wave Equation

The wave equation expressed in two dimensions is of the form

Pu_ Py Pu_ (3.66)

We determine its infinitesimal transformations, infinitesimal generators and all the

groups it admits.
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We let the infinitesimal generator G for (3.66), be of the form

G = oz, t,y, u)a% +5(z,t, vy, u)% +pu(z, t,y, u)a% +A(z,t,y, u)% (3.67)
Then we determine infinitesimals «, 3, i1, A so that the corresponding one-parameter
Lie group of transformations,

= X(z, t,y,u;e), t* =T(x,t,y,w;¢),y* =T(x,t,y,u;¢),u* = U(z,t,y,u;€)
form a symmetry group of (3.66).

From theorem 3.2, we know that the equation

GOy - Py Ful— (3.68)
is the symmetry condition for (3.66) and we note that G® is the second prolon-
gation with

G? = a(z,t,y,u) L + Bz, t,y,u) 2 + u(a:,t,y,u)a% + Mz, t,y,u) 2 + /\ta%t +
XS+ Aya%y + Al 4 Ayyﬁ +Ams0 4 Axyauizy + AT S0 4 Ayf%t + A2
Hence equation (3.68) becomes

[a(m,t,y,u)% + ﬁ(m,t,y,u)% + ,u(x,t,y,u)(% + A(m,t,y,u)% + /\ta%t + /\x% +
W oo 4 N g0 Wl Nt sl A0 g prt s (gl At O ][
G —GH=0

Upon expansion it takes the form;

la(,t,y, u) 2 (T — 58— S+ B, t,y,u) 5 (5 — 5% — 58]+ e, by, u) 2[5 —
Cu— S Mty W) 2[5 — S — SR+ N (G — S — S+ A+ [T -

Ox2 Oy? Ou L ot?

?u 82u] yi[f)Qu %u 32u]+)\:m il [82u 0%u 82u]+)\yy 9 [82u 0%u

922 9y? o2 T 922 T 9y? Dugs L2~ 922~ By2 Quyy LOZ ~ a2

82_1;]+)\mt 0 [82u 0%y 82u]+)\my o [82u 2%u 82u]+)\mt 0 [82u 0%y 82u]+
Oy

Ougt L O2 0z? Oy? ou. ot? 0z? Oy? Ougt L Ot2 0z? Oy?
yt_0 [u _ %u _ Q%u tt_0 [u _ Pu _ Puy _
Ouyt [6152 Oz 8y2] + Auit [ ot2 9x2 8y2] =0 (369)

Thus we obtain the infinitesimals condition to be

A — \TT— AW = () (3.70)
which must be fulfilled whenever wy; = uzy + uy,.

When (3.36) and (3.37)are substituted into (3.70)

we obtain:

Mt + 2 Ayt 4 U Ay + WA — U (g + 20g00 + Uy + U Q) — Uy (far + 2 +

Wt by, 0T fgy) — U (Bt + 20 Bt + Uit B 07 Bu) — 2 (0t +Upvy,) — 20y (f1¢ + Ut flo) —
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2uty (Be+ ueBu) — Ao 20 M Uasw M g M — Usp (O 20 Oy - Uiy O+ U bty —
Usp) = Uy (fhwz ~+ 20z s+ Ve o~ U Py — V) — Ui (B 202 Buie Ui B U2 B — ) —
2um(ax+ux0zu)—2uyx(,ux—|—uxuu)—2um(5x—l—ux5u)]—[)\yy+2uy)\uy+uyy)\u—l—u2/\uu—
uy(ayy+2uyauy+uyyau+u§aw—uy)—uy(uyy+2uyuuy—l—uyy,uu—i-uz,uuu—uy)—ut(ﬁyy—k
2uy Buy +uyy5u+uf/5w — Uy ) =2ty (1t 0ty ) = 20y (R + gy o) — 201y (By +1y Bu)] =
0 (3.71)

On replacing uy by g, + uy, wherever it occurs in the equation and equating
the coefficients of the various monomials in the first and second order partial
derivatives of u,we obtain the resulting equations for the Wave equation (3.66) as

tabulated below i.e.

Table 3.2: Determining Equations for the Wave Equation; equation(3.66)

Monomials Equations Equation number
Uset Be 4tz fy = 0 (1)
Ui Bu=0 (i)
w2, —3a, =0 (i)
Ug Uyt By =0 (iv)
U, a, =0 (v)
Uy 30pr = 3uz (vi)
Uy Uy 3y — 60y — 9y, = 0 (vii)
u? 3 = 0 (vii)
Uy A—ap+ (A —ag)u+ 3Nz =0 (ix)
1 Azzaz + UAG A = 0 (x)

The solutions of (i)-(x) yield the infinitesimals «, 3, y, A as below, [6].
a = c; + T — csy + cot + cg(x? — y? + t2) + 2c9xy + 2c197t (3.72a)

B = c3+ cex — cry + et + ¢10(x? — y? + t2) + 2coty + 2cgat (3.72b)
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pu=1l.co+ legy — leso + Loegt + 2.c82y + co. (=22 + y? + 12) + 2.c10yt (3.72¢)
A = (c11 — s — coy — crot)u + afx, y, t) (3.72d)
« is an arbitrary solution of the wave equation.

We express «, 3, u, A in the standard basis form:

a=1l.c; +0.co+0.c3 + c4x — c5y + cot + 0.c7 + cg(x? — y* + 12) + 201y + 2¢102t +
0.c11 4+ 0.cq

p=0.c; + 1.cg +0.c5 + legy + lesw + 0.6 + Loopt 4 2.c2y + co.(—2% + 92 + %) +
2.c1oyt + 0.c11 + O0.c,

B=0.c; +0.co + l.cg + L.cyt + 0.c5 + 1l.cg.x + l.cry + 2.c8wt + 2.co.ty + c10.1(2? —
Y2 +t2) + 0.c11 + 0.cq4

A=0.c;+0.co+0.c3+0.c4 + 0.c5 + 0.cs + 0.c; — 1l.cg.1.x.u — ¢cg.1.y. u — c9.1.u.t +
l.cii.u+ l.cya

We form the corresponding Lie Algebra of the basis generators vy, va, v3, V4, U5, Ug, U7,
Vg, Vg, V10, V11, Vo Of the form

v = Qe 81, + [ Oa: + 6,2 55 T N2 5= © Qi g, Bi, Aq are the coefficients ¢; in the standard
solutions of a, 3, j1, A

Hence the v)s are obtained from the tabulation as follows:

U = g, Uy = ;y,'l]g = %,04 = x% + ya% + t%,’l}g, = —ya% + a:a% + t%,% =
ta%—kx%,w—td—l—yat,vg:(x —y —l—t2) +2yx +2xt —xua, =
2ey 2 (—2® + y* + t2) + 2yt 2 — yul v = 2zt2 + Qyta%(:v + y? + tQ)B—y —
tu%, v = 88u Vo = a(z, Y, t)%va = a(x,y,t) (3.73)
To determine the one-parameter groups GG; admitted by equation (3.66) from the
infinitesimal generators, v}s, we solve the corresponding Lie equations which give

the groups as shown below. Olver[2§]

v =G X(z,ty,ute) = Xi(ate,y,t,u) (3.74a)
vy = 5o Go: X(z,ty,u s €) = Xo(x,y+e,t,u) (3.74b)
vy =2:G3: X(z,t,y,u:e) = Xz(z,y, t+e, u) (3.74c)
Vg = 33% + ya% + t%; Gy X(z,t,y,u:e) — Xy(efz, ey, et  u) (3.74d)

vy = —ydz +xay +tdt,G5 c X(z, t,y,ue) = Xs(x—e,y,y+ex,et,u) (3.74e)
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Vg = ta%th%; Ge : X(x,t,y,u;e) = Xg(xtet,y, t+ex, u) (3.74f)

vr =t +yd; Gr: X(x,ty,use) = Xo(x,y+et, t+ey, u) (3.749)
vg = (2% —y? + tQ)% + nya% + 2xt% — xu%; Gs: X(x,t,y,u;¢e) —
ete(t2—a?—y?) ‘
Xg( 1725235752 (thngyQ) ’ 172533752?1527‘%273/2) ’ 1-2ex—e?(t2—x2—y?2)’
uy/1 —2ex — (12 — 22 — y2)) (3.74h)

Vg = 2xya% + (2% +y* + tz)a% + 2yt% — yua%; Gy : X(x,t,y,u;e) —

X ( z yte(t?—a?—y?) ¢
N1 2ey—e2(12—22—32) ) 1-2ey—c2(2—z2—y2) " 1—2ey—c2(2—z2—y2)’
uy/1 — 2ey — e2(t2 — 22 — y?)) (3.744)
V1o = tha% + 2yta% + (2% +y* + t2)% — tuc%; Gio: X(x,t,y,u;e) —
X z y the(t?—a®—y?)
10( 1-2et—e2(t2—x2—y2)? 1-2et—e2(t2—22—y2)’ 1-2et—e2(t2—z2—y2)’
uy/1 — 2et — 2(12 — 22 — y?)) (3.747)
V11 = UC%; G X(z,y,tue) = Xu(r,y,t,e%,u) (3.74k)

3.6 Canonical Variables

This technique was applied in integrating first order equation with a known in-
finitesimal symmetry.

This method is of great importance since it was used in eliminating the explicit
dependence of equation on one of the variables either z or ¢ thus integrating the
equation by quadrature.

It was used in the reduction of higher order equations.
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CHAPTER FOUR

LIE SYMMETRY SOLUTIONS OF SAWADA-KOTERA EQUATION

4.1 Introduction

In this chapter, Sawada-Kotera equation is solved using Lie symmetry analysis.

4.2 Infinitesimal Transformations

The solution of Sawada-Kotera equation of the form

U+ 450Uy 4+ 15Uy Uy + 15U 4+ Ugppse = 0 (4.1)

can be obtained analytically. In this study, we have solved Sawada-Kotera equa-
tion analytically using Lie symmetry analysis technique.

We generated infinitesimal generators, infinitesimal transformations and the groups
which the equation admits.

The groups of transformation required were of the form;

¥ = X(x,t,u;e€) (4.2a)
t* =T(z,t,u;e) (4.2b)
u* =Ulx,t,u;€) (4.2¢)

And their corresponding infinitesimal transformations «;, 3, in which

alw,t,u) = X&bud) (4.3a)
Bz, t,u) = Lobud) (4.3b)
N, t,u) = Zebud) (4.3¢)
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4.3 Infinitesimal Generator and Prolongations

The infinitesimal generator of equation (4.1) is

G = oz, t,u)2 + Bz, t,u) 2 + Az, t,u) 2 (4.4)
with u = u(x,t)[6]

Since the equation is a fifth order differential equation, we used the fifth extension
(prolongation) of the generator.

The prolongations of the generator from the first to the fifth are:[28]

G = G[OH—)\ti+)\’”i (4.5)
GEl = GUI NI S piw 0 oo afz (4.6)
GBl = g2l )\ttt a —+ \ttz 8uatt + )\tz:v e \zzr_0 aumz (4.7)
G =GBl )\tttt 8utttt Nttt _0 8um )\tta:x ﬁ Nwww 0 8utargc:c e (%i — (4.8)
Glsl — Gl 4 et _0 Mttm 4 )tttte_0 a’utttt 4 )tttz _ 0 aum 4 )\ttawa (M?IM 4 )\tezazw ﬁ
\TTTTT Wim (4.9)
By theorem 3.2, the fifth prolongation acts on equation (4.1)

GPluy + 450Uy 4 15Uty + 15UlLee + Uggaes] = 0

a%+6%+>\%+)\t£+)\zi At D 8 )\maut + oo a )\tttaztt /\tt:}cauﬂ +
Atz &3“ 4 gm0 B =t A\ttt au?m L\ttt &jtt 4 \ttez Bui — )\tacmc But Ly 8uim

Attt 9 8umtt 4\ttt Wim \tttez ﬁ A\t ﬁ \tzzae ﬁ 4 \zzwax Wzm ] %

[uy + 45U Uy + 15Uz Uz + 15UULee + Uppzzs]) = 0 (4.10)

Thus we presented a5~ [ut + 450U, + 15UpUsy + 15Ulees + Uggaes] + B2 s lue +
45uPuy + 15Ugtyy + 15Ulypy + (T— )\ [ut + 45u%u, + 15Uty + 15U, +
LT— /\ta_ut[“t + 45u2uy + 15U UL, + 15UULze + Uprres) + /\xﬁ[ut + 45uu, +
15U Uz + 15UV Lee + Uppres] + )\tti[ut + 45Uy + 15Uz Uz + 15Uy + Upgrzs] +
)\m [ut + 45U Uy + 15U Uy + 15U e + Urzzzs] + D T 6 [ut + 45U, + 15Uty +

15Uz + Ugppas] + AT 81i [ + 45U 4+ 15Uz U gy + 15U pop + Uzzae) + NE 52— [ug +

8utt
45U, + 15U Uy + 15UULze + Ugzzzs) + )\tm [ut + 45U Uy + 15Uty + 150Uy +
(T— ATTE O [ut + 45U Uy + 15U Uy + 15UV g0+ Uszzzs| + )\“tt [u +45u%u, +

15U+ 15U+ U] + AT 50— [ut + 45Uy + 15U U + 15U e + Urzere] +

43



/\ttxa:

au“ [us + 45Uty + 15Ugtiey + 15Ullgae + Usgara) + A7 50— [ut + 45uu, +

15U Uy + 15Uz + Uggpgn] + AT au —[u+ 45U U + 15U Uy + 15U + Upppas] +

NE_O Ty, + 4502w, + 15Uplyy + 15U + Uppgas] + A7 [uy + 450, +

8uttttt 8utttt

15U g+ 15U pn + Usgrza) + A 50— [+ 45U Uy + 15Ug Ugp + 15Ulgre + Upzaa) +

\ttzze 0 8% — [y + 45Uy + 15Uy Uy + 15U re + Ugpars] + AT 6%3 [us + 45uPu, +
15Uty + 15Ul zze + Uszzee) + )\m’””m[ut + 45uuy + 15Ugtpy + 15UULey +
Upzzzz] = 0 (4.11)

Therefore, we obtained

Uzt + 90cuu? + 450U Uy, + 1502, + 300U Ugre + 150UULL: + QUppppee + Bs +
90 Buttiy iy +45 LUy + 15 LUy + 15 LUy tipgs + 15 BUsUzzy + 15 BUlLz0: + Plzzzzat +
90Uty + 15 MUzee + AL+ 45A7U? + 15X Uze + 15A%%u, + 150y + \*3227 —
0 (4.12)

From equation (4.1), we know that

Uppprr = —Ut — DU UL — 15U Uy — 15Uy 10 (4.13)
and
Ugrrzee = (uxac:c:(;x)/

= (—uy — 450Uy — 15U Uy — 15Utlgy )
= — U —90uuZ — 45U U e — 15u2 , — 30U U e — 15UULz0e (4.14)

Also from equation (4.1) we have

up = —45uuy — 15Uty — 15Ul pre — Uppwrs (4.15)
and
Ut = (Ut)/

= (—45uuy — 15Uppe — 15Ulses — Upeozs)

= — 90Uyt — 45U Uy — 15U Uy — 15U Ut — L DU U g — L DU gt — U ot (4.16)
Substituting equations (4.14) and (4.16) into equation (4.12), we obtained
Qg + 90auu? + 45au Uy, + 15au?, + 300U Uzpry + 15QUULLze — Atz — 900uu? —
4501 Uy — 15au§x — 300Uz Uggy — 150UUg 3z — 90 Buttyty — 45 L1ty — 15BUptlyy —
15U Uy — 154Uags — 156Ulaga — Blgagaat + 90Uzt + 456U Uy + 15Ugitizg +

158U Uzt + 15BUstlgpy + 15BUUgzzt + BlUzzmzwt + I0NUUL + 15N UZpy + A+ 45NTU2 4
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15X, + 15M%20, + 157750y 4 \z3332 — () (4.17)
On simplifying, we had

90U, + 15Mugpe + AP+ 450%u% 4+ 15A%uy, + 15A%%u, + 15AT08qy 4 \T200T —
0 (4.18)
We replaced the generated coefficients in equations (3.34), (3.35), (3.37), (3.38)
and (3.40) into equation (4.18) and ensuring that we replaced u; = —45u’u, —
15U tpy — 15UULee — Ugrere Whenever it appeared in the equation to obtain

90 Uy + 15N Upgg + N — 45U Uz Ay — 15U Ugp Ay — 1D5UUL 35 Ay — Ugzzzz Na + 450U B +
15U U Bt + 15U 220 Bt + Uszzzs Bt — Uzts + 45U UE 0t + 15U U300ty + 15UUL UL 20Oy +
Uplgprrs Oy — 2025utu? B, — 1350uu e By — 1350uUp s By — 90U UpUprrrs Bu —
25004 Uiy U By — 225507, By — 225U U0 1 B — 30U Uy U By — 30U gy U B —

w2, Bu 45Ul N +45uug Ay — 450U — 45U U2 0y +202502 U U B 6 THU U p Uy B+
675U Ugrn Br + 45U UrraeBe + 2025utu B, + 675U U2 U By + 675U UL ULee By —
45U U U B+ 15Uz A + 15U Uz Ay — 15U U — 15UE ULy + 6THU U U B +
225u,u2 By + 225UtlppUsreBe + 19UspUlpprrsBe + 675U U UL, By + 225u3uZ B, +
225Uy Uz Uz B + 15U U p U B + 15Uz A + 30U Ny + 15U Uz Ay + 15US Ny, —
15U2 g —30U3 Aty — 15U U g 0ty — 15U Qo H6 75U U2 B+ 225U U B+ 225U Uppp B+
15U Uz Brw + 135003 Buy + 450U U Buz + 450UUS U0 Buz + 30U UGz Bue +
675U Ul Uy By + 225Uz U2, By + 225Ut s Uy U Bu + 15U Up Uz P + 675u2ui B +
225uium Buu—i-225m¢iumz Buut 15u§ummm B —30UgUyp 0ty —Z’)Ouium y — 30U Uyt B —
30UZ Ut B+ 15U g +45UUL Az +ADUU L A+ 1DUU g Ay FABUUEN i +ADUU G U g A+
15uU3 Ay, — DUUL Oy — ADUUE Qe — ADUUL U Oy — 1DUUL U g Oty — ADUUS Qe —
ABUUA Uy V. — 1DUUL Qs + 6TDUBUL Brze + 225Ut Uy Bozn + 225U Ugrr Braet

15U Braa+2025U° U3 Buge +6 THUUL Uy Buza +6T5U Ug Uiy B +A5UU U B+
2025U3 Uy U Bue 6 THUUL U, Buz+6T5U Uy U Buz 45U 3o U gz Bue +6 THUPUL Uz Bu+
225Uy Uz Uz Bu+225U% U2 B+ 15U e U B+ 20250313 By +6 750U U B+
675U U2 U Bune + A5UUE U rzz0 Bune + 2025002040 B, + 6THuUE U2, B+
675U U U U B, + ADUUG Ui U B + 6T5U U By + 225Uty B+

2,3 3 2
225U U U B + 1DUU U B — ADUU Oy — I0UUG U Oy — ADUME O, —
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ABUUE U g Oy — 45U 3¢ By — I0UU L Ut B — ADUU . U By — ADUUR U g By — ADUU g Ol —
13500 U3 g Buuae + 450U31%, Buuze + 450Uty lgpUser Buuze + 30UalzeUszras Buucs+
900U U2 Ugae Buue + 300U3 UgaUzga Buuz + 300Utz U2, Buuz + 20UesreUszeae Buue+
225023 Buuu + 225Ut U2 Ugg Buuu + 15U Ugngze Buuu + 450U U U g Bunu+
15063 UgaUage Buuu + 1500502 0 Buwu + 10UEUeerUraraa Buuu + 225U U3 Buyuua+
Bou:vxuztﬁux:r - 20uxw:vuactﬁux - 5ux:mvxumt6u - Souiuwtﬁuu:ﬂ:p - 60uxux1uztﬁuuz -

2 3 2 4
15uxxuxt6uu - 20uxuxxxuxtﬁuu - QOumuxtﬁuuux - SOUxexu:ctﬁuuu - 5u$urtﬁuuuu -
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Ut Brwz—DUsUgat Buze— 19Use Uzat Puz — DUz Ugat fu— 15“,»25 Uzt Buue — 19Uz Uga Ut Buu—
SUS Ut Buris — Szt Bz — 10U U0t Buw — DaaUaaat Bu — U awt Bun — Szarat Be —
SU Uzt fu = 0 (4.19)
Since «, f and A are functions of x,t and u only, we equated the coefficients of the
powers of u = u(z,t) and their combinations to zero.

We obtained the determining equations as follows.

Table 4.1: Determining Equations for Sawada-Kotera Equations

Monomials Equations Equation number
T T— ~5B, =0 (1)

Ugzzat =56, =0 (i)

Ui —Bu = —Pu (i)

(T T p— Buu =0 (iv)

Ug Uy —60y, = —5Buzazs — Qu — 15044 (v)

(U — Brzzze — Au + Bt +u —Hay = 0 (vi)

Ugp U 10\, — 35y, =0 (vii)

ud, Qyy =0 (viii)

Uy — Q4 = Qugzar — DAuzaze — 15Aes (ix)

The subscripts indicate the derivatives. Thus the solution of the determining
equations is elementary.

Equations (i) and (ii) shows that [ is a function of ¢ only since it is independent
of wand x . So = B(t) . Equation (v) shows that a does not depend on u since
Buzzzz = 0 and B, = 0 and « = «a(z,t) thus ay,, = 0 which shows that « is linear
in z. Therefore a = ¢(t)x + d(t)

Equation (vi) also shows that a, = £, implying that o = £z 4 p(t) where p is
some functions of ¢ only.

Equating the values of @ we have
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a=c(t)r+d(t) and a = L Bx + p(t) (4.20)
to obtain

c(t) = +B, and d(t) = p(t) thus we have the values of « as given below

o =a+ tazw (a)

By equation (vii), we see that \,, = 0 because « is not a function of v . Thus A
is linear in u .

So A =7(z,t)u+ ¢¥(z,t) (4.21)
for certain functions of 7 and .

Referring to equation (ix) we have —ay = Qupper — DMuzzee — 19Xz then Ay =0
and ogppze = 0 since oy, = 0 thus —oy = =5\ pran

0 = DA\yzgre = DTx (4.22)
But a = ¢(t)z + d(t) so

o = Houd = Har(a + di(0)] = 2 Bu + 1)

Thus we have

7o = glow] = 5580w + pu(t)] (4.23)
And also 7, = £[oy] = e (t)a+d,(t)] (4.24)
Integrating both (4.23) and (4.24) respectively, we had

7= &[5 8ur® + i (t)x] +1(t)
= %5&352 + %Mt(t)x +n(t) (4.25)
T = ¢(t)a® + 1di(t)x + n(t) (4.26)

Lastly equation (x) implied that 7 and ) be the solutions of Sawada-Kotera equa-

tion.

A =T1(x,t)u+Y(x,t) (4.27)
So we have

At = Tz, t)u + (2, 1) (4.28)
Aszzzs = Tozzea (T, U + Vozgae (T, 1) (4.29)

Therefore from equation (x) we had

(2, ) u + (2, 1) = —(Toawea (T, ) U + Vozaea (T, 1)) (4.30)

Equating the coefficients of u and other terms, we obtained
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(T, 1) = ~Tozwea (T, 1) (4.31)

and

Vu(2,t) = —Yuazea(T, 1) (4.32)
Using equations (4.25) and (4.26) upon equations (4.31) and (4.32), we obtained
T = 25 Bu®® + £ (t)z 4 mu(t) (4.33)
7t = 15¢u(t)2? + §du(t)T + (1) (4.34)

So upon differentiating equations (4.33) and (4.34) with respect to x , we had

—Tezzer = 2%512 Or —Typrze = %Ct
Therefore, we wrote the equations as
558”4 S (t)x 4+ nu(t) = — 356
Lep(t)x? + tdy(t)z +m(t) = —ic
Equating the coefficients of x , we got ¢,y = 0,dy = 0, By = 0, gy = 0
Thus we had m,(t) = —2%5“ and also n,(t) = —%ct
Hence S is linear in ¢ thus it can be expressed as

c(t) =co+ et (4.35)
and d(t) = do + dit (4.36)
therefore we express [ as
B = ay + tas (b)
Finally, with A = 7(z,t)u + ¢ (x, t) then we have
A =—2uay ()
Thus with G = «a(x, t, “)a% +5(x, t, u)% + Az, t, u)% we had the general solutions

from the determining equations became

o= a;+iazx (4.374)
B =ay+tas (4.37ii)
A = —2uas+&(z,t) (4.37iii)

where ¢ is an arbitrary solution of Sawada-Kotera equation.
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4.4 Infinitesimal Generators and Lie Groups

The infinitesimal transformations of Sawada-Kotera equation, «, 8 and A\ are ex-

pressed as
w1 w9 ws
L \
a=|lec | 0.cy | Lesx

5

ﬂ == O.Cl ]_.CQ 1.Cgt

A= | 0.c; | O.co —%.c;;u

Thus we formed the corresponding basis/ infinitesimal generators as follows.

o]
’U}l:%

Js]
’wgza

w3 = xa% + 5t% — 2u8%

We then computed the Lie brackets of the vector fields of the infinitesimal sym-
metry (w;) by using

(w;, wj] = ww; —wjw;

to obtain

Wi, Wy w1 Wa W3
w1 0 0 w1
Wy 0 0 Wy
Ws —wp | — 511]2 0

Lie groups admitted by infinitesimal generators were obtained by solving the cor-
responding Lie equations through exponentiation which led to the formation of
the groups as follows

w; = %7G1(5) : X(x,t,u;e) — Xl(aj —|—€,t,U)
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Wy = %7 G2(6) : X(‘Ta tu; 6) — XQ(xa l+e, u)
wy = o +5t8 — 2l Gs(e) : X(x,t,use) — Xs(wes, te™, ue )
Where GG; and G5 are trivial groups since they are translation and scaling while

(75 is a non-trivial group.

4.5 Group Transformations of Solutions

If each G; is a symmetry group and u = p(x,t) is a solution of Sawada-Kotera

equation (4.1), then the functions @; below are also solutions.|28]

1:,0<l’—€,t)
u_QZ,O(iL‘,t—E)

o —&

Us = p(l’tﬁ 755) —2¢

,te e
Noting that groups G; and G4 are trivial groups since they are translation and

scaling while (G5 is a non-trivial group.

4.6 Invariant Solutions and Exact Power Series Solutions

A group invariant solution is obtained when a group of transformations maps a so-
lution into itself. The invariant solution of equation (4.1) under the one -parameter
group of generator V can be obtained by calculating two independent invariants
Ny = k(x,t) and Ny = p(z,t,u) by solving the equation

N(J) = oz, t,u) I +&(z,t,u) R +p(z, t,u) S =0 (4.39)
Or its system of characteristics

dx _ dt _ du
a(ztu) — E(ztu) T p(x,tu) (440)

Here we consider the group transformations that arise from all the generators of
(4.1)

We then allocate one of the invariants as a function of the other as given below

p= o(k) (4.41)

We then substitute for p , in (4.41) to get an ordinary differential equation for
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the function ¢(k) of one variable. By doing this we decrease the figure/number of
independent variables by one.

We now show the list of generators (X;) and their equivalent Invariant Solutions

(u)

Case 1

For the infinitesimal generator wy = a%’ the invariant solution under transforma-

tion has a system of characteristics % = dTI

Integrating the equation, we obtained
t=p,t=¢ and u= ¢(t).
When we substituted u; = p’, u, = 0 for ¢' = % into equation (4.1) we got the triv-

ial solution to be u = ¢(t) = ¢ (4.42)

Case 2

0

For the generator wy = 7, the invariant solution under transformation has a

system of characteristics % = %I

Integrating the equation, we have © = p,x = £ and u = p(x)
When we substituted u, = 0,u; = ¢, Upy = " Uppe = ", Uppoww = ¢ for
¢ = 9 into equation (4.1), the equation was reduced into the following ordinary

dx

differential equation
45¢%¢ + 15¢'¢" + 15¢¢" + ¢ =0 (4.43)

where ¢/ = fl—z.

Case 3

For the generator, ws = x% + 5t% — QU%, the invariant solution under transfor-

mation has a system of characteristics % = d?‘” = fl—;u
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Integrating the equation yielded

Inz = Ints + ¢ = t% :>M:xt—%
5

and

Inz = lnu"2 + ¢ = :>,u:xu%

1
u 2

Giving 75 = zu? = {5 = u? and on squaring both sides, we got u = t’%¢(,u)
where p = T3,
Substituting into equation (4.1), reduced the equation into the following Ordinary

Differential Equation

—30 — Lud +450°¢ + 15¢/¢" + 1509 + ¢17) = 0 (4.44)
where ¢ = fl—z

In this case, the exact solutions to the Sawada-Kotera equation were obtained
from some ODEs or from PDEs of lower order than the original PDE [21].
Besides this, we want to identify the explicit solutions conveyed in terms of ele-
mentary or, at least, known functions of mathematical physics, in terms of quadra-
tures. This is not always the case, for simple semilinear PDEs. However, we know
that the power series can be used to solve differential equations, including many
complicated differential equations with non-constant coefficients.

We considered the exact analytic solutions to the reduced equations using the
power series method. Once we obtained the exact analytic solutions of the re-
duced equations (ODEs), the exact power series solutions to the original PDEs
were obtained.

In this case, we considered equations (4.43) and (4.44).

In view of (4.43) we have

45¢2¢" + 15¢'¢" + 15¢¢" + ¢ = 0

We obtain its solution by use of a power series method given as

P(B) = EgZocaB (4.45)
Substituting (4.45) into (4.43) we got

1205 +302  (a+1)(a+2)(a+3)(a+4)(a+5)cats5*+90cocs + 1557 (a—z+1)(a—

z242)(a—2+3)csCa—r420°+30c1co+ 1550 _(a—z+1)(a—2z4+2)(z2+1)coq1Ca—ria+
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45c3cy + 455 (%7 (@ — 2 + 1)¢ic,—iCazr1 (4.46)
Setting a = 0, we got

120c5 + 90coes + 30cico + 45cke; = 0

On simplifying we get

cy = 120(900003 + 30cic9 + 45c3¢y) (4.47)

For a > 1 we obtained

Cats = (a+1)(a+2)(a113)(a+4) e 15Xio(a — 2+ 1)(a — 2 + 2)(a — 2 + 3)C2Ca—zqs +
1539 (a—z4+1)(a—242)(z41)Coq1Ca—ry2+4539_ 37 (a—2+1)ciCoiCa—rin) (4.48)
fora—0,1,2...

When a = 1 we had

6 = =5 (360cocs+180c¢; c3+90cdca+60c3+90coc?) (4.49)
When a = 2 we had

Cr = 2520(9000005+54001C4+1350003+3600263+270000102+45cl (4.50)
Thus the power series solution (4.45) into (4.43) gave an exact analytic solution

of the form:

P(B) = co+ 18+ 2% + c38° + +caf 4 5 8° + L2 Crs 540

=co+ 1S+ o+ 3B + ey Bt — 50 +-(90coes + 30y ¢y + 45c3c; ) 35—

ZZO 1 (a+1)(a+2)(a+3)(a+4)(a+5)

[15%¢_o(a —z+1)(a— 2+ 2)(a — 2+ 3)csCa—zy3+
152 (a—2+1)(a—242)(241)Cop1Canrot4520_ X7 (a—2+1)cicoicary1] ST (4.51)
Now, the exact power series solution of (4.1) was obtained to be

u(z,t) = co + 17 + cox? + 32 + ey + c57° + X2 o5t

= co+ 1 + cox? + 323 + cuxt — 120(900003 + 30cq1¢co + 450001) —
220 1 (a+1)(a+2)(a+3)(a+4)(a+5

152 (a—2+1)(a—2+2)(241) ot 1Carrot 45N X7 (a—2+1)cic,icqryr |z (4.52)

1655 _g(a —z+1)(a— 2z +2)(a — 2+ 3)csCayst

where ¢;(i = 0,1,2,3,4) are arbitrary constants.

Also, we found a solution of equation (4.44) in a power series method of the form
(4.45). substituting into (4.44) and comparing the coefficients, we obtained
120c5 + X2, (a + 1)(a + 2)(a + 3)(a + 4)(a + 5)cars8* + 90cocs + 1557 4(a —

z4+ 1)(a—z+4+2)(a — z+ 3)caCo—zy38* + 30c1c0 + 1552 _(a — 2z + 1)(a — z +
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2)(z+1)c, 4+ 1cgpio +45ckc) + 455937 o(a — 2+ 1)cic,iCari1 — %ca — éaca =

0 (4.53)
Setting the coefficients for a = 0 we obtained

120¢5 + 90c¢ycs + 30¢i ¢ + 450(2)01 — %co =0

which was simplified to give

5 = —510(900003 +30c1c9 4 45cke; — %co) (4.54)

For a > 1, we obtained

Cors = (a+1)(a+2)(a_-‘rl3)(a+4)(a+5) (1532 _j(a—z+1)(a—2z+4+2)(a— 2+ 3)cCa—rts +
1559 _(a—z4+1)(a—2+2)(z+1)Cop1Ca—ria +4552_ 37 ((a— 2+ 1)ciCoiCary1 —
2, _ 1

£Cq — £0Cq) (4.55)

For the values of a =0,1,2...
When a = 1 we have

6 = =55 (360cocs+180¢; c3+90cica+60c3+90coc —2 ¢ (4.56)

When a = 2 we have

¢7 = 5295 (900cocs+540¢1 c4+135cc3+360c205+270ccr co+45¢5 — 3o (4.57)

Therefore the power series solution of equation (4.44) is given as
O(B) = co+ 1 + c2f* + c38° + cafft + 56”4+ X2 cays BT

= ¢y + Clﬁ + 0252 + 0353 + C4ﬁ4 — ﬁ(QOCng + 300102 + 456%01 — %Co)ﬁs —

[e%9) 1 a
e eimeE e 19 i—(a — 2 + 1)(a — z + 2)(a — 2z + 3)caCa—zq3 +
1559 _y(a—z4+1)(a—2+2)(z+1)Cog1Ca—ria 455737 ((a— 2+ 1)CiComiCamsir —
%Ca - %aca]ﬁa+5)
Hence the exact analytic solution to equation (4.1) is given as

w(z,t) = cot 5 + at™5 + a5 + et 4 cuattTs — 735(90cocs + 30¢i¢ +

2 _7 00 1 a
45¢5e1 = 5€0)a°t T — X e nErErs [0 X—o(a — 2+ 1)(a — 2 +2)(a —

243)CCamzy3+ 1030 _g(a—2z+1)(a—2+2)(2+1)Cop1Camsya +4532_ X7 ((a— 2+

a+7

1)¢iComiCazi1—2Co—2ac, |zt s (4.58)
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4.7 Symmetry Solutions

Symmetry transformations convert known solutions into new solutions. Consider-
ing group transformations that arise from the infinitesimal generators

wy =2 wy =2 wy =22 4+ 5t2 — 22

known to be

Gy X(x,t,ue) = Xq(x +¢,t,u)

Go : X(z,t,u;e) = Xo(x, t +e,u)

Gs: X(z,t,u;e) — X3(wes, te’ ue )

Since u = u(x,t) is a known solution of equation (4.1) and so is

Gs(e)f(x,t) = f(ze e, te 5™

We consider the group GG3. Thus the new symmetry transformed solution under
(i3 becomes

u = f(wes, te>).e™? (4.59)

whenever a known solution of (4.1)is given as u = u(x,t)

Solution 1

Considering the invariant result of (4.1), u = ¢ and substituting into equation
(4.59) we obtain

u = ce

Solution 2

Inserting the exact solution
U= o+ 1@ + 20 + c33° + cyx* — 135(90cocs 4 30c1¢ + 45cher )a® — (b)a P

as a known solution of equation (4.1) in which

b*:EOO

1 a
a=1(a+1)(a+2)(a+3)(a+4)(a+5) (1532 _gla—z+1)(a—2+2)(a—2+3)csCazqs+

1559 _j(a—z+1)(a—2z+2)(z+1)cop1Caria + 455232 ((a— 2+ 1)¢iCoiCa—zii]
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into (4.59) then we obtain
u = [co+crmet +eg(we®)? +ez(xef)3+cy(wef)t — 2 (90cocs +30ci co +45c2ey ) (wef)® —

120
(b*) (:Be(“5+5€) )] o2

Solution 3

Substituting the exact solution
U= ot ™5 + 1@t 5 + a5 + e3Pt + cux't 5 — - (90coes + 30¢cp + 45c2e; —

120
Zeo)at ™5 — (b*) (275

as a known solution of equation (4.1) and b* taken as stated above into equation

(4.59) we obtain

u=|co (tef’s)_%—I—clmeE (te55)_%+02(x65)2 (te55)_%+03(meg)3(te5€)*1—|—c4 (:ves)4(te55)_g —

_7 at7

510(900003 + 30cicy + 45¢3 — %co)(xe€)5(te5€) 5 — (b%)(xe?) 5 (te) ™5 )].e
Solutions 1 and 2 are trivial solutions since they are generated from trivial groups;
G1 and G5. Solution 3 is a non-trivial solution from the non-trivial group; Gs.

Thus the new symmetry solutions were successfully obtained.
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CHAPTER FIVE

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

5.1 Introduction

This section entails summary, conclusions and recommendations.

5.2 Summary

In this study, we have obtained the symmetries and similarity reductions of the
Sawada-Kotera equation which is highly nonlinear using Lie symmetry analysis
method. We developed infinitesimal transformations, prolongations (extensions of
the generator), symmetry generators and group transformations of the equation.
All the group-invariant solutions to the equations are considered and the exact
analytic solutions are investigated by using the power series method. We also
obtained symmetry solutions of Sawada-Kotera equation from the exact power

series solutions.

5.3 Conclusions

Our obtained symmetry solutions demonstrate that Lie symmetry analysis method
is straightforward and best mathematical tool to obtain analytical solutions of
highly nonlinear PDE’s.

The thesis has proved that nonlinear differential equations can be solved easily
to obtain their exact solutions which has direct impact on the big four agenda
in terms of manufacturing as can be expressed in modeling of mechanical waves,

water waves, sound waves, light waves and more so in navigation.

o8



5.4 Recommendations

We hope that this method can be more effectively used to investigate others NLEESs
which are frequently used in applied mathematics, physical sciences and engineer-
ing.

The solution can be obtained more easily if solvers like MATHEMATICA, MAT-
LAB and MATHTYPE can be involved since the working is so rigorous and time

consuming.

5.5 Suggestions for Further Research

Future research may take into consideration the solutions of the sixth and higher
order nonlinear partial differential equations that have not been determined in

previous researches.
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