
        

www.tropicalplantresearch.com  376 
Received: 06 July 2019  Published online: 31 December 2019 

https://doi.org/10.22271/tpr.2019.v6.i3.047  

6(3): 376–392, 2019 

DOI: 10.22271/tpr.2019.v6.i3.047 

ISSN (Online): 2349-1183;  ISSN (Print): 2349-9265  

TROPICAL PLANT RESEARCH 
The Journal  of  the  Society for Tropical Plant Research 

Research article  

Efficient protocol of complete inventory for tree regeneration and 

recruitment studies over one hectare in selected tropical 

natural forests, Kenya 

Joseph Hitimana
1, 2

*, James Legilisho Ole Kiyiapi
1
 and Balozi Kirongo Bekuta

1 

1University of Eldoret; P.O.Box. 1125 Eldoret 30100 
2University of Kabianga, Kenya 

*Corresponding Author: hitimanajh@yahoo.com          [Accepted: 30 October 2019] 

Abstract: This study sought to establish an efficient inventory protocol to estimate regeneration 

stock and dynamics in natural forests. Field and computer outputs were integrated to develop 

complete inventory protocol for selected natural forest types in Kenya. Inventory cost and 

precision for four plot sizes (5 m × 5 m, 10 m × 5 m, 10 m × 10 m and 20 m × 20 m) were 

determined and compared. Specific objectives were to determine (i) precision levels of estimating 

tree seedling density using different plot sizes across forest types; and (ii) optimum plot size which 

minimise both sampling error and inventory effort for use in each forest type. Seedling counts and 

time taken per plot were recorded systematically over 400, 200, 100 and 25 plots ha-1 for the 

respective plot sizes. Larger plots and their data were created by merging smaller ones through 

programming with R Software. Smallest population mean-variance,       was obtained using 

data from 5 m x 5 m plots. Both precision and inventory effort varied with plot size used, but in 

reverse directions. Seedlings population mean errors were 15.4% of the mean for rain forest, 

14.7% for moist montane forest and 9.9 % for dry forest type. Inventory cost decreased with 

increasing data compilation unit size, e.g., 50.42 hrs ha-1 for 25 m2  unit to 3.21 hrs ha-1 for 400 m2 

unit in rainforest. Similar trend was observed in other forest types. Recommended plot sizes for 

tree seedlings are 75 m2; 62.4 m2 and 88.4 m2 for Kakamega rain forest, Mt Elgon montane forest 

and Loruk dry woodland forest, respectively. These plot sizes gave acceptable uncertainty levels 

between ±11% and ±17% of mean estimate ha-1. Tree diameter distributions from 5 m x 5 m plots 

revealed that tree component recruitment was irregular over time across forest types. 

Keywords: Climatic factors - Deciduous - Homegarden - Meitei - Phenology. 

[Cite as: Hitimana J, Kiyiapi JLO & Bekuta BK (2019) Data compilation unit - Inventory effort - Optimum plot 

size - Sampling error - Recruitment. Tropical Plant Research 6(3): 376–392] 

INTRODUCTION 

According to Weiskittel et al. (2011), regeneration is the renewal of a forest by natural self-sown seed, 

coppice, suckers, lignotubers, or by artificial means. Recruitment refers to individuals that reach a prescribed 

size or established seedlings that have survived its first year, following germination. Both regeneration and 

recruitment processes significantly influence the outcome of forest growth-model projections; particularly in 

areas dominated by naturally regenerated forests (Weiskittel et al. 2011). The number of tree seedlings is used 

as a measure of regeneration potential of a forest; and may be assessed in sample plots, subplots or microplots 

(McWilliams et al. 2015). Rates of recruitment are often gaged from analyses of tree diameter size distribution 

curves which reflect tree regeneration, growth and mortality in the forest over time (Churski 2006, Wang et al. 

2009). For example, the logarithm of the number of trees over diameter class becomes a straight line for regular 

recruitment and sufficient regeneration (Devis & Johnson 1987). Fluctuating trend line indicates good but 

discontinuous regeneration over time which results in a wave-like recruitment of small individuals into the 

larger size classes (Harper 1977, Devis & Johnson 1987, Poorter et al. 1996, Hitimana et al. 2004). 

Forest   regeneration  and   recruitment   are  attributes  of   high  ecological,  silvicultural   and  conservation  
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significance in forest conservation and management (Serna 1986, Grainger 1993, Schreuder et al. 1993, Wong 

et al. 2001, Bellefontaine et al. 2002, Sarkar & Devi 2014, Pandey et al. 2016, Raj 2018). Information on 

regeneration in forests is needed for making policy decisions and for strategic planning of rehabilitation and/or 

restoration of degraded ecosystems (Evans & Turnbull 2004); or to conserve threatened species and other 

components of biodiversity that are valuable to mankind (Groombridge & Jenkins 2000, Njunge & Mugo 2011, 

Oldfield & Newton 2012, Hanief et al. 2016). Tropical natural forests and woodlands are of diverse entities with 

lesser-known and understood species mix and stand structure (Girma 2012, Mulatu  et al. 2017). These 

ecosystems are difficult to analyse and understand in their pristine state (Grainger 1993, Singh 1993, Lanly 

1997) due to lack of established; reliable  and widely acceptable inventory protocols (Arellano et al. 2016). 

Inventory protocol components consist of plot size, plot shape, number of plots and spatial or temporal pattern 

of the same units (Wong et al. 2001). 

An efficient inventory protocol must be accurate, precise and cost-effective (Husch et al. 2003). According 

to Wong et al. (2001), deciding on how many plots to be used in an inventory is critically required for the 

management of sampling errors. The greater the number of plots, the smaller the sampling error; and the more 

precise and potentially accurate the results will be. However, the relationship between the number of plots and 

sampling error is non-linear, with diminishing returns as numbers increase (Shiver & Borders 1996, Nassiuma 

2000). There is need to determine an optimal sample size below or above which the precision or accuracy levels 

may fall to undesirable level.  The choice between “few but large” and “many but small” plot sizes has 

implications on both the cost and precision in opposite directions. The acceptable target sampling error in 

documented forest inventories is between10 and 20 % of the mean (Wong et al. 2001) but not known for 

tropical natural forests in Kenya. 

The cost of enumerating items in a plot is also critical but not well documented. The relationship between 

plot size and cost or effort of inventory would enable to identify and use cost-effective inventory protocols. In 

this study, a sampling scheme for tree seedling inventory refers to a combination of sampling design, plot size 

and sampling intensity used to assess seedlings (individuals <1 cm DBH and not taller than 150 cm) over one 

hectare. There is little information on the relative efficiency of different schemes to floristic assessment in 

tropical natural forests (Herold & Skutsch 2011, Shijo et al. 2013, Nduati et al. 2016). There is need for research 

on accurate and efficient forest inventory schemes to be used in resource assessment for the support of 

sustainable forest management and conservation of the diverse tropical forests and woodland formations, which 

are highly variable in composition, diversity, physical and dynamic structures (Hemp 2006, Talbot et al. 2014). 

There is a gap for research towards standardisation of inventory designs to enhance monitoring of forest 

resource conditions within and across habitats (Feld et al. 2009, Hicks et al. 2014). We note, however, that field 

methods are situation-specific (Schreuder et al. 1993, Burkhart & Tome 2012, Arellano et al. 2016); and that 

they target specific population characteristics (Gillison & Brower 1985, Philip 1994, Myers & Patil 1995, 

Greenwood 1996, Wong et al. 2001). Therefore, field protocols should be calibrated and validated for suitability 

before they are adopted (Pretzsch 2009, Weiskittel et al. 2011). In validating inventory methods, target species 

and ecosystem components should be identified and evaluated using cost-effective studies.  

Forest resource managers, including silviculturists, lack accurate and timely quantitative resource 

information on regeneration and other parameters to make good decisions (Schreuder et al. 1993, Wong et al. 

2001). It is worth noting that tropical flora remains chronically understudied and that the lack of floristic 

understanding hampers ecological research and large-scale conservation plans (Phillips et al. 2003). Precision 

level, accuracy and cost are major concepts in selecting efficient sampling schemes (Jayaraman 1999, Wong et 

al. 2001). The precision is high when errors are small; and accuracy is high when the estimated value is close to 

the population true value (Nassiuma 2000, Wong et al. 2001). The lack of knowledge of the true value of a 

variable is also known as uncertainty which is measured by the sampling error of an inventory (Lackmann 

2011). According to Morais & Schreuber (1997), sampling inventories should provide the statistical precision of 

estimated quantities within accepted limit, that is, uncertainty levels of estimates must be disclosed. In many 

cases, inventories are designed to achieve a specific precision level expressed by a fixed sampling error.  

This study sought to develop field sampling protocol suitable for use to count and quantify regeneration in 

selected tropical natural forests, using a “ 1 ha-method” (Alder & Synnott 1992, Wong et al. 2001, Phillips et al. 

2003) by determining optimum data compilation unit size within the one-hectare standard area. The main 

objective was to provide efficient protocol to use in forest tree seedling stock inventories across the „tropical 

rain forest- moist montane forest  dryland forests /woodlands gradient. Specific objectives were: (i) to quantify 

population mean-variance of the seedling stocks across selected tropical rainforest- moist montane forest - dry 
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woodland forest spectrum in Kenya; (ii) to determine efficient and cost-effective data compilation unit size to 

estimate the number of seedlings over one hectare and  a high precision level for each natural forest type; and 

(iii) determine recruitment trends of the tree component in the studied forest types. It was hypothesized that: (i) 

Precision levels of forest regeneration estimates from complete inventory per hectare vary with used plot size in 

mixed natural forests; (ii) there exist optimum plot size [i.e. data compilation unit size] in a complete inventory 

of tree seedlings in the selected forest types; (iii) regeneration dynamics is regular over time leading to stable 

recruitment process of the tree component in the selected forest types.  

MATERIALS AND METHODS 

Study area and sites 

Data used to test the performance of different plot sizes were collected from three distinct forest  sites that 

mimic a climate gradient from low rainfall dry zone (Loruk woodland; <700 mm year-1) to high rainfall humid 

zone (Kakamega rainforest; 1900–2000 mm year-1) through the intermediate moist zone (Mt Elgon forest; 

1400–1700 mm year-1) (Kokwaro 1988, Fashing et al. 2003, Hitimana et al. 2004, Mutiso et al. 2013). These 

sites also differed in altitude from <1000 m a.s.l. at Loruk (low altitude dry woodland) to >2000 m at Mt. Elgon 

(montane forest) through <1600 m a.s.l. at Kakamega (mid-elevation tropical rain forest). In terms of ownership 

and governance; Loruk woodland is community-owned and under silvopastoral land use system. Kakamega and 

Mt Elgon are protected state-owned forests; surrounded by highly populated settlements involved in mixed 

farming. Therefore; selected forest types and sites represent ecological; climatic and socio-economic 

complexities of natural forest resources in Kenya and the tropics. Kakamega mixed tropical rainforest (TRF); 

Mt Elgon moist lower montane forest (MMF) and Loruk dry woodland forest (DWF) locations in Kenya are 

shown in figure 1.  

The Kakamega forest vegetation is influenced by high rainfall and average annual temperature of 20°C with 

February as the hottest month (21°C) and July as the coldest month (19°C). Despite past disturbances, the forest 

is on the recovery path and near climax development stage (Mutiso et al. 2013). Mt. Elgon forest ecosystem 

(located on the steep slopes of the extinct volcano and occurring at a height of 4321 m a.s.l. on the Kenya - 

Uganda boarder) is also influenced by high rainfall and mean annual temperature of 15–18°C (Jaetzold & 

Schmidt 1983, Hitimana 2000, Hitimana et al. 2004). It is in a building phase of succession, following intensive 

historic selective logging activities (Hitimana et al. 2004) which affected the population structure and 

regeneration of some target species (Hitimana et al. 2010). Finally, Loruk woodland forest is a typical dryland 

ecosystem with short trees (<6 m on average; Hitimana et al. 2019) and poorly developed undergrowth, in the 

wider Baringo landscape of Kenya (Kiyiapi 1994, Omondi 2016). The climate is characterized by erratic rainfall 

and high temperatures (22–25 °C).   

 
  Figure 1. Location of study sites in kenya. 
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Field methods and simulations 

Fieldwork and data organization: Data collection over 1 ha-forest unit of reference was done in the field to 

determine “true” values of forest attributes for each forest type. It was achieved by establishing four hundred 

5 m × 5 m plots (Fig. 2) to ensure accurate field observations of forest attributes including seedlings. A 

complete enumeration of seedlings was systematically done within 1 m2 (i.e. 1 m × 1 m) subplots, one after 

the other, within the 5 m × 5 m plots in order to enhance accuracy of observations on seedlings. Records on 

seedlings from were put together for each 5 m × 5 m smallest data compilation unit. Data were recorded on 

field sheets and were later transferred into the computer MS Excel spreadsheet. Each 5 m × 5 m unit was 

assigned a unique code (Fig. 2 for illustration) for easy identification, retrieval and manipulation during data 

analysis. Data were organized per forest type and plot size. 

 
Figure 2. Example of field arrangement for four hundred 5 m by 5 m plots in the forest. [Each cell with a number represent a 

coded 5 m x 5 m plot for easy data set identification; entry; storage; retrieval and use in sampling simulation activity. First 

three digits denote the forest site (122-Kakamega site; 111- Mt Elgon site; 131- Loruk site). The subsequent digits represent 

serial plot number within the 100 m x 100 m frame (Hitimana et al. 2019)] 

Study variables: Study variables include plot size, sampling intensity, inventory cost per hectare, percentage 

sampling error and number of trees in different diameter size classes.  

Plot size: Four plot sizes were tested for efficiency and cost-effectiveness as data compilation units (Table 1) for 

seedling stocks over one hectare (100 m × 100 m). Plot sizes larger than 5 m × 5 m were formed by merging 

contiguous smaller units through the confounding technique in R software: 5 m × 5 m  10 m × 5 m  10 

m × 10 m  20 m × 20 m (see R codes in Appendix I). Display of plots of different sizes over 1 ha area is in 

Appendix II.A–D. The merging of smaller units was automatically associated with collating records they 

contained. Totals, averages and other data computations in each unit were performed in R Software.  

Sampling intensity: Complete inventory (100% intensity) of seedlings over 1 ha (100 m × 100 m forest unit) was 

carried out using the four different plot sizes in each selected forest type. The number of compilation units 

for each plot size used varied from 25 to 400 (Table 1).  
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Table 1. Number of plots (N) in a hectare for different plot sizes. 

 Sampling Intensity  

(%)
1
 

Plot Sizes 

5 m × 5 m 

(25 m
2
) 

10 m × 5 m 

(50 m
2
) 

10 m × 10 m 

(100 m
2
) 

20 m × 20 m 

(400 m
2
) 

100 400 200 100 25 

Note: 
1n= Sample size (no. of sample plots selected from one- hectare forest unit); N= population size 

(total number of plots in a one- hectare forest) 

Inventory cost over one hectare: The inventory cost or effort per hectare was determined for each plot size 25 

m2, 50 m2, 100 m2 and 400 m2. Sampling effort was measured by the time taken to complete work within the 

1 ha plot area. Time taken to collect data in each 5 m × 5 m plot was recorded in the field using a watch 

chronometer. The forest inventory protocol developed for one hectare is a standard to be used in any 

inventory where a network of several 1 ha plots may be established as permanent sample plots or 

independent temporal sampling plots (Picard et al. 2010, Brown & Williams 2016). 

Percentage sampling error: Conventionally, the precision of an estimate is measured by the sampling error % 

(uncertainty level %) (Lackmann 2011, Klauberg et al. 2016) (Equation 1). Sampling error was computed 

for each plot size for different sampling intensities, up to the complete inventory, and based on standard 

error of the mean (Equation 2). 

 ampling  rror    
1
2⁄  ( 5  onfidence interval width 

 
 100=

    

 
    ……..... ( quation 1  

where,   is the mean of the distribution; and sampling error (error    is the  5 percent confidence interval 

expressed as a percentage of the mean.  

Standard error of the mean (SE) for each plot size was computed as follows (Equation 2): 

SE =  
√ 

⁄    …………………………………….. (Equation 2) 

where, S = Standard deviation given per hectare for each plot size; n = sample size (i.e. no. of plots for 100% 

intensity and plot size used).  

Number of tree seedlings, saplings and large trees: Individuals in each tree development stage (seedling, sapling 

and large trees) were counted from each 5 m × 5 m plot. Diameter at breast height (DBH), measured at 1.3 m 

from ground level, was used to distinguish saplings from individuals in other development stages. Veneer 

caliper was used to measure small size trees e.g. saplings; and large calipers were used on larger diameter 

trees (Avery & Burkhart 2015). In this study, seedlings were individuals <1 cm DBH and < 1.50 m tall; 

saplings were small trees with 1–5 cm DBH; and large trees were individuals ≥ 5 cm DBH (adopted from 

Stride et al. 2018). Tree diameter size distributions are often used to indicate rates of recruitment, growth 

and mortality in a forest over time, and they are used to analyse forest stability, regeneration history and 

impact of past disturbances (Poore & Sayer 1991). The numbers of individuals were converted per hectare 

for each DBH size class.  

Data analysis 

Efficient plot sizes for natural tree seedlings stock inventories in “1 ha-method”: Population mean-variance for 

seedling stocks in each selected forest type was determined based on 5 m × 5 m plot size and 100% intensity 

(complete inventory) using (Equation 3) and interpreted (Hitimana et al. 2019).  

Population mean variance = 
  

 
 …………………….. (Equation 3) 

where, σ2 = population variance; N = Total number of plots per ha which varied with plot size.  

This mean variance was used as a measure of standard [inherent] variability for the density of seedlings in 

the forest. It was also used to compute standard [inherent] sampling error percent. Percentage sampling error 

was computed for each plot size (compilation unit type) for seedling counts.  

Both sampling error % and inventory effort (cost) were plotted on the same graph as dependent variables 

over plot size (independent variable). The lower the sampling error % produced by a plot size, the more precise, 

reliable and suitable is that size as a compilation unit. The optimum plot size was identified at the intersection of 

the two-line graphs (i.e. inventory cost and sampling error % line graphs). Regression analysis (IBM SPSS) was 

applied to obtain regression equations and ascertain the probability level of significance of the observed 

regression relationships. Solving both equations simultaneously enabled the identification of optimum plot size 

for each forest type. 
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Regeneration variability and recruitment characteristics in studied forests: Recruitment of tree individuals from 

one development stage to the other was evaluated based on the ratios of number of seedlings - to - number of 

saplings; and the ratios of individuals in different successive diameter size classes (the “q” ratio;  quation 4  

as dependent variables and diameter classes as independent variable. The graph of q over DBH classes is a 

measure of how regular regeneration and recruitment have been in the forest (Hitimana et al. 2004, Marimon 

et al. 2012).  

q = 
      

  
  ………………….…………. ( quation 4) 

where, D(i-1) is density in a lower DBH class; and Di is density in the immediate upper DBH class.  

RESULTS AND DISCUSSION 

Efficient plot sizes for natural tree seedling stock inventories in “1 ha-method”  

Inherent true variability of seedling stocking in the selected forests determined based on 5 m × 5 m plot size 

and complete inventory is as shown in table 2.  

Table 2. Inherent true variability of tree seedlings stocking per hectare compiled using 5 m × 5 m plot size for 

three natural forest types in Kenya. 

Forest attribute Forest Smallest  
 

 ⁄  Inventory cost (ha h
-1

) Plot size (m × m) 

Seedlings ha-1 TRF 1,726,559.16 0.02 5 × 5 

 MMF 223,003.91 0.02 5 × 5 

 DWF 3,033.49 0.04 5 × 5 

Observed true variability in the distribution of number of seedlings in the forest varied from one plot size to 

the other; and was inversely proportional to the sample size. Inherent variability in tree seedling stocks was by 

far highest in tropical rain forest; intermediate in tropical moist montane forest and lowest in dry woodland 

forest. This variability in tropical rainforest (TRF) was 7.74 and 569 times that of Mt Elgon tropical moist 

montane forest (MMF) and Loruk dry woodland forest (DWF); respectively. If the extent of variability indicates 

the level of complexity of the variable under consideration, then the complexity continuum in tree regeneration 

from the highest across forest types to the lowest levels was found to be TRF – MMF – DWF.  

For 100 % inventory over 1 ha, the choice of plot size influences the cost of operations, level of uncertainty 

and level of precision (Table 3). The smaller the sampling unit, the higher the cost of sampling was experienced. 

The choice between many small plots and a few larger plots for a constant sampling intensity makes a 

difference.  

Table 3. Precision level and costs of complete tree seedlings inventory using different plot sizes per ha, for selected natural forests in 

Kenya. 

Plot  

size  

(m
2
)

 

  

Tropical rain forest Moist montane forest Dry woodland forest 

Pop. 

Mean 

Pop. 

Error 

(%) 

Pop. 

CV 

(%) 

Inventory 

Cost 

(hr ha
-1

) 

Pop. 

Mean 

Pop. 

Error 

(%) 

Pop. 

CV 

(%) 

Inventory 

Cost  

(hr ha
-1

)  

Pop. 

Mean 

Pop. 

Error 

(%) 

Pop. 

CV 

(%) 

Inventory 

Cost  

(hr ha
-1

)  

25 16,764 15.4 157 50.42 6,279 14.7 150 40.68 1,094 9.9 101 22.38 

50 16,764 16.2 117 25.28 6,279 15.6 113 20.10 1,094 10.7 77 11.35 

100 16,764 18.2 92 12.70 6,279 18.0 91 9.98 1,094 11.9 61 5.65 

400 16,764 29.0 70 3.21 6,279 24.1 58 2.43 1,094 18.7 45 1.45 
Note: Plot size (m2)= 25   5 m × 5 m; 50   10 m × 5 m; 100   10 m × 10 m; 400   20 m × 20 m; Pop. Mean= Population 

Mean; Pop. Error (%)= Sampling error (%) = Uncertainty (%) = (Standard Error* student‟s t/mean)*100 as a measure of precision 

level; Pop. CV (%)= It measure levels of true inherent variability of seedlings stocking per hectare being reflected by a specific plot 

size. 

The other aspect of efficient plot size is the desired precision level of the estimates. Sampling error is a 

measure of uncertainty level or bias which is inversely proportional to the precision level in a complete 

inventory context. The smaller the error, the higher is the precision level. In this study, the bias (error) decreased 

with decreasing plot size (Fig. 3).  It means that, all factors held constant, smaller plot sizes were accurate and 

more precise. Smallest plot size (25 m2) produced highest internal variability (CV% >100%) for all forest types 

(Table 3) and 400 m2 plots produced the lowest CV%. Variability is an inherent property of the system of 

nature, and not of the analyst; thus, it can only be reduced by sampling entire populations or stratification of the 

area. Variability refers to the observed true heterogeneity or diversity of elements in a population and is an 

inherent property of the system of nature (Lackmann 2011). A trade-off between cost and precision levels 

determined the efficient plot sizes in different forests (Fig. 3). The precision of an inventory depends on the 
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trade-off between using larger plots which have a lower inter-plot variance or using a larger number of smaller 

plots which tend to reduce the standard error of the mean (Evans & Viengkham 2001). Plot sizes that balanced 

desired precision level (uncertainty %) and cost were 75 m2 (CV between 92 and 117%; Table 3) for TRF; 62.4 

m2 (CV between 91 and 113%) for M MF and 88.4 m2 (CV between 61 and 77%) for DWF. These optimum 

compilation units (i.e. plots) result in 95% Confidence Interval of the total number of seedlings ±17.0% of the 

total number of seedlings over one hectare within TRF;±16.3% of the total number of seedlings over one hectare 

within MMF and ±11.3% of the total number of seedlings over one hectare within DWF. 

 
Figure 3. Efficient plot size for 100% inventory of 1 hectare for the number of tree seedlings in Kenya: A, Kakamega 

tropical rain forest (TRF); B, Mt Elgon moist montane forest (MMF); C, Dry woodland forest (DWF). 

The reliability levels of estimates in the three tropical natural forests in Kenya compare well with findings by 

Lackmann (2011) for estimation of carbon stock changes in complex forests [mean carbon stock  10% of the 

mean at 95% confidence and at a modest cost]; and with desired precision level by Cavalcanti et al. (2011) for 

plantation forests ( 10%). The sampling errors associated with optimum plot sizes found in this study are also 

within the range of recommended precision levels for diagnostic inventories in Amazon forest (Klauberg et al. 

2016), that is, 20% for two forest species assessment and 15% for one species assessment. Cielo-Filho et al. 

(2009) recommend ±20% sampling error at 95% confidence level for tree species abundance and importance 

value estimates in a tropical forest stand in Brazil.  

Data compilation units larger than 100 m2 (e.g. 10 m × 10 m) have low precision level (Table 3) in the 1 ha-

method.  
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Regeneration variability and recruitment characteristics in studied forests  

The proportion of tree seedlings (<1 cm DBH individuals) dominated with 86% in the Kakamega tropical 

rainforest (TRF) (all sizes tree density = 19, 448 individuals ha-1) and 81% in Mt Elgon moist montane forest 

(MMF) (total density = 7,711 individuals ha-1). In Loruk dry woodland forest (DWF) (total density = 2,369 

individuals ha-1); seedlings and saplings dominated almost equally with 46% and 41% relative abundances; 

respectively (Fig. 4). Saplings contributed only 8% in both TRF and MMF; being under-represented if the 

reverse-J curve describing a stable natural forest is referred to (Devis & Johnson 1987). These results indicate a 

deficient seedling stage in dry woodland forest and a deficient sapling stage in moist montane forest; where 

large trees were exceptionally more abundant than saplings. This shows a degenerating population if such trend 

in recruitment continues. In absolute terms, TRF had the highest stocking ha-1 (2.5 times than MMF and 8 times 

the stocking in DWF) in Kenya. Abiotic factors such as soil, topography, precipitation, temperature and drought 

are known to influence regeneration success including seeding; seed germination; tree seedling establishment 

and early sapling survival and growth (Schwartz & Caro 2003, Principe et al. 2014). 

 
Figure 4. Recruitment patterns of trees for different tropical natural forest types in Kenya: A, Absolute density (Individuals 

ha-1); B, Relative distribution (Relative abundance in %). [TRF= Tropical rainforest; MMF= Moist montane forest; DWF= 

Dry Woodland Forest; Seedlings= Individuals <1 cm dbh and <1.50 m tall; Saplings= Small trees with 1–5 cm dbh; Large 

trees= Individuals >5 cm dbh] 

Based on the q quotient (Fig. 5); regular recruitment was only observed in the tropical rainforest in tree sizes 

(post sapling size) up to about 110 cm DBH class. Recruitment of trees in MMF Site followed same trend as in 

TRF Site up to 80 cm DBH class. However, at Mt Elgon Site; some exceptional events or processes occurred 

and distorted diameter size distribution for trees with DBH >50 cm; causing drastic departure from the balanced 

trend observed in Kakamega tropical rain forest site. The narrower range of DBH classes in the DWF Site would 

suggest; notwithstanding environmental and ecological constraints to tree growth; that this ecosystem is the 

simplest and perhaps the youngest in succession. To this extent; tropical rain forest was judged more stable than 

the other forest types; and the woodland ecosystem was the least stable. Rising “q” quotient at the tail-end of 
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diameter size distribution in TRF is characteristic of mature; self-regulating tropical forests. Protection and 

rehabilitation measures are needed in management and conservation of the structurally unstable ecosystems: 

MMF and DWF. Periodic monitoring programmes; say every 10 years; are encouraged to follow up the 

recovery and development processes over time.  

 
Figure 5. Trend in regeneration and recruitment process in three natural forest types in Kenya. [TRF= Tropical rain forest; 

MMF= Tropical moist montane forest; DWF= Tropical dry woodland forest] 

The recruitment process of individuals into the different development stages was not regular (Fig. 5). There 

has been reported heavy logging activities in Kakamega (Fashing et al. 2003, Momanyi 2007, Mutiso et al. 

2013) and at Mt Elgon forests over past decades (Hitimana et al. 2004, Hitimana et al. 2010) which may have 

distorted recruitment patterns. The number of seedlings is higher than the number of saplings. There was an 

observed irregular trend in the moist montane forest where the stocking of trees larger than 5 cm DBH was 

lower than saplings (1–5 cm); with large trees: saplings ratio of 100:80. Ordinarily; there should be more 

saplings than large trees in forests that experience regular recruitment patterns such as in TRF (100:130) and in 

DWF (100:330). Seedling establishment and sapling development may have been tempered with by logging and 

charcoal production (Hitimana et al. 2010). However, the monitoring of regeneration establishment and 

resilience are required for MMF and DWF. Seed germination and seedling establishment are known to be 

vulnerable stages; very much sensitive to variations in microsite conditions such as edaphic, droughts, fires, 

tramping and grazing (Hitimana et al. 2004, Pretzsch 2009, Eshete et al. 2011, Kiruki et al. 2017). Grazing may 

prevent young seedlings from reaching mature stages through trampling, uprooting and accelerated site 

degradation (Zida et al. 2007, Eshete et al. 2009). Uniquely low recruitment trends in dry woodland forests 

could be as a result of environmental hardships working against seed germination and or seedling establishment. 

A similar trend of low seedling and sapling counts in the wider Baringo woodland was observed for Acacia 

tortilis as a result of high mortality rate occasioned by competition for moisture, drought, shading effects of 

mature trees and intense browsing (Kiyiapi 1994). Overall; the TRF was found to be more complex and diverse 

than the moist montane and dry woodland forest types; with DWF being the simplest and perhaps most 

vulnerable ecosystem among them. Rehabilitation work is required to improve stocking levels in MMF and 

DWF. 

CONCLUSIONS 

This study on regeneration and recruitment assessment in tropical forests of Kenya revealed that closed-

canopy forests (TRF and MMF) had higher stocking levels and higher stocking variability for seedlings per 

hectare than dry woodland forest (DWF). Complete inventory effort per hectare varied with plot sizes in a 

reverse order across all studied forest types. The inventory cost was highest in TRF (most complex in structure 

and diversity) and lowest in DWF (least complex). Efficiency of complete inventory in tropical natural forests to 

estimate the number of seedlings per hectare depends on the size of the plot used as the data compilation unit. 

The required optimum data compilation units for tree seedlings were found to be below 100 m2 for all forest 

types. Data obtained from the 5 m x 5 m compilation units enabled to gather quality data on all diameter size 

classes and allowed analysis of diameter size distributions across the studied natural forest types in order to 

model recruitment of the tree component and trace regeneration dynamics over time. Recruitment was found to 

be irregular over time in all the selected forests, perhaps due to socio-ecological factors associated with each 

forest type. 
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Appendix I: R codes for creating various plot sizes. 

1. Introduction 

This process is the same in R studio for all the three forests. We use Mt. Elgon site to illustrate it. We just 

update the name of the forest in the function and run to get output. 

2. Merging  5 m ×  5 m plots to create 10 m × 5 m plots 

Field data collection from the forest was done and organized in 400 plots of equal size of 5 m × 5 m 

(Smallest plot size tested in the study).  

Display of grid for four hundred 5 m × 5 m plots is available (Appendix II. A.) 

Reorganising field data from same forest in 10 m × 5 m plot size was done in R as described below.  It 

required having 1 ha forest divided it into 200 plots of 10 m × 5 m each. Each plot here is going to be twice as 

large as the the plots in the previous part.  

We create the 200 plots here by merging every two consecutive plots (vertically) from the initial grid of 400 

plots. 

First, let us identify the unique plots in order 

plots =unique(mt_elgon$plot.no.) 

plots =as.character(plots) 

We take the odd plot number eg 1111 to represent the new plot that is created by merging the two plots 1111 

and 1112. The unique plots are arranged in ascending order from 1 through 400. The position of the plot in this 

arrangement (between 1 and 400) can be separated as either even eg 2 or odd eg 1. The first and second lines of 

the code below checks if the position is even or odd and creates a list with the values TRUE if the position is 

even and FALSE if the position is odd. 

is.even =function(x) x%%2 ==0 

even =is.even(1:length(plots))  

Finally, the two lists plots and even are merged together to create a table with two rows, one for plot number 

and another indicating whether the position is odd or even, and 400 rows, one for each unique plot number. 

mytable=cbind(plots,even)  

mytable=as.data.frame(mytable) 

Our new table is named mytable 

Unique number for the new created plot of 10 m × 5 m is the odd plot number from each pair of small plots 

that were merged. In R, we create another column in mytable. This column will contain the uniqueplot 

number.The first line of code below creates another column and calls it newplots. The second part of the code 

adds the values of plot number that we want. 

mytable=mutate(mytable, newplots = plots ) 

mytable[mytable$even ==T,][3] =mytable[mytable$even ==F,][3] 

We use this table to check for all values of plot number in our mt_elgon data set that match the values of 

plots in mytable and we replace them with the values of newplots in mytable. We also ensure the values in these 

three columns are of the same “data type”. 

mytable$plots =as.character(mytable$plots) 

mytable$newplots =as.character(mytable$newplots) 

mt_elgon$plot.no. =as.character(mt_elgon$plot.no.) 

for (i in 1:nrow(mt_elgon)) { 

  for (j in 1:nrow(mytable)) { 

    if (mt_elgon$plot.no.[i] ==mytable$plots[j]) { 

      mt_elgon$plot.no.[i] =mytable$newplots [j] 

    } 

  } 

} 

length(unique(mt_elgon$plot.no.)) 

## [1] 200 

We now have 200 unique plots from initial 400. We can now go ahead with our analysis just in the same 

way as it is done in the 400 plots. 

uniq_plots =as.character(unique(mt_elgon$PLOT.NO.)) 

length(uniq_plots) 

## [1] 200 
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Arranging the plots appropriately; 

uniq_plots =cbind(uniq_plots[1:20], uniq_plots[21:40], uniq_plots[41:60], uniq_plots[61:80], 

uniq_plots[81:100], uniq_plots[101:120], uniq_plots[121:140], uniq_plots[141:160], uniq_plots[161:180], 

uniq_plots[181:200]) 

uniq_plots =as.data.frame(uniq_plots) 

Display of grid for two hundred 10 m × 5 m plots is available (Appendix II.B) 

3. Merging 10 m × 5 m plots to create 10 m × 10 m plots 

The 200 plots grid is made of 20 columns and 10 rows. We need to merge two consecutive plots 

(horizontally) to create 10 columns, and obtain a grid of 10 columns by 10 rows as follows. 

x =unique(mt_elgon$plot.no.) 

x =as.data.frame(x) 

y =x 

y[11:20,] =y[1:10,] 

y[31:40,] =y[21:30,] 

y[51:60,] =y[41:50,] 

y[71:80,] =y[61:70,] 

y[91:100,] =y[81:90,] 

y[111:120,] =y[101:110,] 

y[131:140,] =y[121:130,] 

y[151:160,] =y[141:150,] 

y[171:180,] =y[161:170,] 

y[191:200,] =y[181:190,] 

mytable=cbind(x,y) 

names(mytable) =c("plots", "newplots") 

mytable$plots =as.character(mytable$plots) 

mytable$newplots =as.character(mytable$newplots) 

mt_elgon$plot.no. =as.character(mt_elgon$plot.no.) 

for (i in 1:nrow(mt_elgon)) { 

  for (j in 1:nrow(mytable)) { 

    if (mt_elgon$plot.no.[i] ==mytable$plots[j]) { 

      mt_elgon$plot.no.[i] =mytable$newplots [j] 

    } 

  } 

} 

 

length(unique(mt_elgon$plot.no.)) 

## [1] 100 

We now have 100 unique plots from initial 200 plots. We can now go ahead with our analysis just like in the 

400 plots. 

uniq_plots =as.character(unique(mt_elgon$PLOT.NO.)) 

length(uniq_plots) 

## [1] 100 
 

Then we arrange the plots appropriately. 

uniq_plots =cbind(uniq_plots[1:10], uniq_plots[11:20], uniq_plots[21:30], uniq_plots[31:40], 

uniq_plots[41:50], uniq_plots[51:60], uniq_plots[61:70], uniq_plots[71:80], uniq_plots[81:90], 

uniq_plots[91:100]) 

uniq_plots =as.data.frame(uniq_plots) 

Display of grid for one hundred 10 m × 10 m plots is available (Appendix II.C) 

4. Merging 10 m × 10 m plots to create 20 m × 20 m plots 

4.1. Merging pairs of consecutive plots vertically to create 20 m × 10 m plots 

First, let us identify the unique plots from the list of 10 m × 10 m - plots  

plots =unique(mt_elgon$plot.no.) 

plots =as.character(plots) 
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The unique plots are arranged in order from 1 through 100. The position of the plot in this arrangement 

(between 1 and 100) can be separated as either even eg 2 or odd eg 1. The first and second lines of the code 

below check if the position is even or odd and create a list with the values TRUE if the position is even and 

FALSE if the position is odd. 

Finally, the two lists plots and even are merged together to create a table with two rows: one for plot number 

and another indicating whether the position is odd or even and 100 rows, one for each unique plot number. 

is.even =function(x) x%%2 ==0 

even =is.even(1:length(plots))  

mytable=cbind(plots,even)  

mytable=as.data.frame(mytable) 

 

Our new table is named mytable 

Unique number for the new created plot of 20 m × 10 m is the odd plot number from each pair of 10mx10m-

plots that were merged. In R, we create another column in mytable. This column will contain the uniqueplot 

number for 20 m × 10 m plot.The first line of code below creates another column and calls it newplots. The 

second part of the code adds the values of plot number that we want. 

mytable=mutate(mytable, newplots = plots ) 

mytable[mytable$even ==T,][3] =mytable[mytable$even ==F,][3] 

 

mytable$plots =as.character(mytable$plots) 

mytable$newplots =as.character(mytable$newplots) 

mt_elgon$plot.no. =as.character(mt_elgon$plot.no.) 

 

for (i in 1:nrow(mt_elgon)) { 

  for (j in 1:nrow(mytable)) { 

    if (mt_elgon$plot.no.[i] ==mytable$plots[j]) { 

      mt_elgon$plot.no.[i] =mytable$newplots [j] 

    } 

  } 

} 

 

length(unique(mt_elgon$plot.no.)) 

## [1] 50 

 

We now have 50 unique plots from initial 100 plots 

4.2. Merging consecutive 20 m × 10 m plots horizontally to form 20 m × 20 m plots 

The fifty 20 m x 10 m plots are arranged in 5 rows and 10 columns. In R, we need to reduce the 10 columns 

with 10 m length each to 5 columns with 20 m length each. 

x =unique(mt_elgon$plot.no.) 

x =as.data.frame(x) 

y =x 

y[6:10,] =y[1:5,] 

y[16:20,] =y[11:15,] 

y[26:30,] =y[21:25,] 

y[36:40,] =y[31:35,] 

y[46:50,] =y[41:45,] 
 

mytable=cbind(x,y) 

names(mytable) =c("plots", "newplots") 
 

mytable$plots =as.character(mytable$plots) 

mytable$newplots =as.character(mytable$newplots) 

mt_elgon$plot.no. =as.character(mt_elgon$plot.no.) 

 

for (i in 1:nrow(mt_elgon)) { 

  for (j in 1:nrow(mytable)) { 

    if (mt_elgon$plot.no.[i] ==mytable$plots[j]) { 

      mt_elgon$plot.no.[i] =mytable$newplots [j] 

    } 
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  } 

} 

length(unique(mt_elgon$plot.no.)) 

## [1] 25 

We now have 25 unique plots from initial 50 and can go ahead with our data analysis from them. 

uniq_plots =as.character(unique(mt_elgon$PLOT.NO.)) 

length(uniq_plots) 

## [1] 25 

Appropriate arrangement of the plots through are codes: 

uniq_plots =cbind(uniq_plots[1:5], uniq_plots[6:10], uniq_plots[11:15], uniq_plots[16:20], uniq_plots[21:25]) 

uniq_plots =as.data.frame(uniq_plots) 

Display of grid for twenty-five 20 m × 20 m plots is available (Appendix II.D) 

 

Appendix II: Sampling frames for different plot sizes. 

II.A: Grid of the 400 5 m × 5 m-plots: case in Mt Elgon 100 m × 100 m - Forest Unit. 

  



Hitimana et al. 2019 

www.tropicalplantresearch.com  392 

II.B: Grid of the 200 10 m × 5 m-plots: case in Mt Elgon 100 m × 100 m - Forest Unit. 

 

II.C: Grid of the 100 10 m × 10 m-plots: case in Mt Elgon 100 m × 100 m - Forest Unit. 

 

II.D: Grid of the 25 20 m × 20 m-plots: case in Mt Elgon 100 m × 100 m - Forest Unit. 

 


