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Abstract

Let R be a commutative finite ring with unity and let Z(R) be its
set of zero divisors. The study of R in which the subset of zero divi-
sors forms a unique maximal ideal has been extensively done yielding
interesting and useful results. For different classes of R, the invert-
ible element have been characterized by use of fundamental theorem of
finitely generated abelian groups while Z(R) has been characterized via
the zero divisor graphs. Scanty in the literature are the maps that pre-
serve the structures of R and its subsets. In this paper we discover and
characterize the automorphisms of zero divisor graphs of Galois rings.

Keywords: Galois rings, zero divisors, maximal ideal
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1 Introduction

The classification of the complete automorphisms of a graph is often not an
easy task. Until now, the literature on the automorphisms of zero-divisor
graphs is scarcely available. Much of the recent work on automorphisms of
zero divisor graphs has demonstrated the fundamental importance of these
graphs in the Structure theory of finite rings with identity. Most researchers
have concentrated on the structure of zero divisor graphs. In this form vital
parameters such as diameter, girth, binding number and connectivity of zero
divisor graphs are quite conclusive. On the other hand, documented results on
the automorphisms of zero divisor graphs of Galois rings are not general. For
recent work on automorphisms of finite rings and unit groups of finite rings,
reference can be made to [1, 2,3,4,5], Unless otherwise stated R0 will represent
Galois ring while Z(R0)∗ shall denote the non-zero zero divisors, Z(R0) shall
denote the Jacobson radical of R0 and R0/Z(R0) shall denote the Galois field
of order pr where p is prime and r be a positive integer. For any R0 we shall
denote the automorphisms of R0 by Aut(R0) and its cardinality by |Aut(R0)|.
From [6] it is evident that |R| = pnr and |Z(R)| = p(n−1)r and characteristic
of R is pk. If k = n, R is of the form Zpn [x]/ < f > , where f is a monic
polynomial in Zpn [x] of degree r and irreducible modulo p . These rings are
uniquely determined by the invariant p, n, r and are called Galois rings denoted
by GR(pnr, pn).

2 Preliminary Results

Proposition 1. [4] Let R be a finite commutative ring. Then, there is no
distinction between the left and right zero divisors and every elements is either
a zero divisor or a unit.

Proposition 2. [7] Let R be a finite local ring. Then R is Galois if and only
if Z(R) = pR for some prime number p.

Proposition 3. [7] If R0 is a Galois ring, then Aut(R) ∼= Aut(R/Z(R)).

Proposition 4. [7] Let R be Galois ring of order pnr and of characteristic pn,
having a maximal ideal Z(R) such that R/Z(R) ∼= GF (pr).

Proposition 5. [7] let R be Galois ring of the form GR(pnr, pn). Then R has
a unique Galois subring of the form GR(pns, pn) if and only if s|t.

Next, we present results on the automorphisms of zero divisor graphs of Galois
rings. Since the results are different for various characteristics of R, we present
them on case to case basis.
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3 Automorphisms of Γ(R0)

Proposition 6. Let CharR0 = p and R0 = GR(pr, p),then Aut(Γ(R0)) = ∅

Proof. Clearly, Z(R)∗ = ∅ and V (Γ(R0)) = ∅. So Aut(Γ(R0)) has no
element.

Proposition 7. Let CharR0 = p2 and R0 = GR(p2r, p2) and S0 = GR(p2, p2).
Then |Aut(Γ(R0))| = |Spr−1| = 1

(p−2)!
|Aut(Γ(S0))|

∑r
i=1 p

r−i(pr − 2)!.

Proof. The set of zero divisors, Z(R) = pR0. Let pr0 and pr
′
0 ∈ Z(R0), then

clearly pr0pr
′
0 = p2r0r

′
0 = 0 so that (Z(R0))2 = 0 and each vertex is adjacent

to the other. On the other hand |Z(R0)∗| = pr − 1 vertices, so that Γ(R0)
induces a complete graph on pr − 1 vertices. Evidently, a complete graph on
pr−1 vertices has a vertex joined to each of the other pr−2 vertices by edges.
Therefore an automorphism of Kpr−1 can map each vertex to any of the others,
and in addition this does not put any limit on where any of the other pr − 2
vertices are mapped, as they are all equally connected. Thus the automorphism
group must be of order (pr − 1)(pr − 2)(pr − 3), . . . (2)(1) = (pr − 1)! and in
particular isomorphic to Spr−1.
Now, |Z(S0)∗| = p− 1. But |Aut(Γ(R0))| = (pr − 1)! = (p− 1)(pr−1 + pr−2 +
pr−3 + · · · + 1) = (p − 1)

∑r
i=1 p

r−i(pr − 2)! and |Aut(Γ(S0))| = (p − 1)!.
Dividing |Aut(Γ(R0))| by |Aut(Γ(S0))| establishes the relation |Aut(Γ(R0))| =

1
(p−2)!

|Aut(Γ(S0))|
∑r

i=1 p
r−i(pr − 2)!.

Proposition 8. Let R0 be Galois ring of order p2r and characteristic p2. Then
|Aut(Γ(R0))| = |V (Γ(R0))|(pr − 2)!

Proof. |Aut(Γ(R0))| = (pr−1)! = (pr−1)(pr−2)!. But |V (Γ(R0)| = (pr−1).

Since (pr−1)(pr−2)!
(pr−1)

is (pr − 2)! the results follow.

Proposition 9. Let R0 = GR(p2r, p2) and S0 = GR(p2, p2). Then
|V (Γ(R0))| = |V (Γ(S0))|

∑r
i=1 p

r−i.

Proof. Clearly (Z(R0))2 = 0, each zero divisor connects to the other in
R0 and S0. But |Z(R0)∗| = pr − 1 and |Z(S0)∗| = p − 1. Now |V (Γ(R0))| =
(pr − 1) = (p − 1)(pr−1 + pr−2 + pr−3 + · · · + 1) = (p − 1)

∑r
i=1 p

r−i while
|V (Γ(S0))| = (p − 1).Dividing |V (Γ(R0))| by |V (Γ(S0))| gives |V (Γ(R0))| =
|V (Γ(S0))|

∑r
i=1 p

r−i.
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Proposition 10. Let R0 be a ring of order p2r and characteristic p2. Then
|Aut(Γ(R0))| = (pr − 3)!

∑
deg(V (Γ(R0)).

Proof. Since Γ(R0) is a complete graph on pr − 1 vertices. This graph will
map the pr − 1 vertices independently without any restriction giving a graph
whose automorphism group is of order (pr − 1)! and the sum of its degrees is

(pr−1)(pr−2). Since (pr−1)!
(pr−1)(pr−2)

is (pr−3)!. Evidently, the sum of the degrees

divides |Aut(Γ(R0)| which establishes the proof.

Proposition 11. Let R0 be a ring of order p2r and characteristic p2. Then
|Aut(Γ(R0))| = 2(pr − 3)!

∑
E(Γ(R0)).

Proof. We note that Γ(R0) is a complete graph on pr − 1 vertices. So a
complete graph with pr − 1 vertices has automorphism group whose order is
(pr − 1)! and the sum of its edges is 1

2
(pr − 1)(pr − 2). Since (pr−1)!

1
2

(pr−1)(pr−2)
is

2(pr − 3)!, the sum of the edges divides |Aut(Γ(R0)|, which establishes the
proof.

Proposition 12. Let R0 = GR(p2r, p2) and S0 = GR(p2t, p2) such that r|t.
Then |Aut(Γ(S0))| = |Aut(Γ(R0))|(pr−2)!

∑r
i=1 p

r−i

(pt−2)!
∑t

i=1 p
t−i

Proof. |Aut(Γ(R0))| = (pr − 1)! = (pr − 1)(pr − 2)! = (p − 1)(pr−1 +
pr−2 + pr−3 + · · · + 1) = (p − 1)

∑r
i=1 p

r−i(pr − 2)!. while |Aut(Γ(S0))| =
(pt − 1)! = (pt − 1)(pt − 2)! = (p − 1)(pt−1 + pt−2 + pt−3 + · · · + 1)(pt − 2)! =
(p − 1)

∑t
i=2 p

t−i(pt − 2)!. Expressing |Aut(Γ(S0))| in terms of |Aut(Γ(R0))|
gives |Aut(Γ(S0))| = |Aut(Γ(S0))|(pr−2)!

∑r
i=1 p

r−i

(pt−2)!
∑t

i=1 p
t−i

Proposition 13. The automorphism group of Γ(GR(p2r, p2)) with an edge
removed is isomorphic to S2 × Spr−3.

Proof. Now Γ(GR(p2r, p2)) is a complete graph on pr − 1 vertices. Let
Γ(R) = Kp(r−1)\e, where e is an edge of Kpr−1. Now Γ(R) has a pair of vertices
v and w which both have degree pr − 3 along with pr − 3 vertices all of degree
pr−2. Any automorphism permute each of these two vertices independently of
the other. So the automorphism group is the direct product of two permutation
groups. It is clear that the only way for the two sets of vertices is to either
swap or fix the two, so this part of the direct product must be isomorphic to
S2 . Similarly, the other pr − 3 vertices all are joined to each other , so this
portion of the direct product will be isomorphic to the group Spr−3. It follows
therefore that the automorphism group of Γ(R) is isomorphic to S2×Spr−3.
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Proposition 14. Let R0 be Galois ring of order pn and characteristic pn.
Then |Aut(Γ(R0))| = Πn

l=2(pn−l(p− 1))! .

Proof. Consider the set X = {p, p2, p3, · · · , pn−1}. For p 6= 2. Then, by [1],
Vp = {ps | (p, s) = 1},
Vp2 = {p2s | (p2, s) = 1},
Vp3 = {p3s | (p3, s) = 1},
...
Vpn−1 = {pn−1s | (pn−1, s) = 1}.
Now, we have |Vp| = pn−2(p− 1); |Vp2| = pn−3(p− 1); |Vp3 | = pn−4(p− 1) and
progressing inductively, we obtain |Vpn−2| = p(p − 1) and |Vpn−1| = (p − 1).
Then |Aut(Γ(R0))| = Πn

l=2(pn−l(p− 1))!.

Proposition 15. Let R0 = GR(pnr, pn), for n ≥ 3 and r ≥ 1.Then
|Aut(GR(pnr, pn))| =

∏n
l=2(p(n−l)r(pr − 1))!.

Proof. Let ξ1, · · · ξr ∈ R0 with ξ1 = 1 so that ξ1, · · · ξr ∈ R0/Z(R0) form the
basis forR0/Z(R0) regarded as a vector space over its prime subfield GF (p).
For each prime integer p, let X = {p, p2, · · · , pn−1} and VΣaiξi where ai ∈
X, be disjoint vertices and by proposition 14, the routine enumeration yields
|Aut(GR(pnr, pn))| =

∏n
l=2(p(n−l)r(pr − 1))!.

The following results is an immediate consequence of the above Proposition.

Corollary 3.1. Let R0 = GR(pnr, pn), for n ≥ 3 and r ≥ 1 and T0 =
GR(p2r, p2). Then |Aut(Γ(R0))| =

∏n
l=2(p(n−l)r|Aut(Γ(T0))|)!.

Proposition 16. Let R0 = GR(9, 9), then the Cartesian product Γ(R0) ×
Γ(R0) is a hypercube of two dimensional space. Moreover, Aut(Γ(R0)×Γ(R0)) ∼=
C4.

Proof. Clearly, a hypercube is a Cartesian product of p edges of a complete
graph on two vertices. The GR(9, 9) induces a complete graph K2 but Γ(R0)×
Γ(R0) = K2 ×K2 which is a hypercube of dimension two. Since Γ(R0) = K2

we have Γ(R0) × Γ(R0) ∼= C4 . Therefore, the automorphism group is the
permutations of all the elements of C4.

Proposition 17. Let R0 = GR(9, 9), then the Cartesian product Γ(R0) ×
Γ(R0) × Γ(R0) is a hypercube of three dimensional space. Furthermore, the
Aut(Γ(R0))× Γ(R0)× Γ(R0)) ∼= S4 × C2.

Proof. Clearly, a hypercube is a Cartesian product of p edges of a complete
graph on two vertices. Then GR(9, 9) admits a complete graph K2 but Γ(R0)×
Γ(R0)×Γ(R0) = K2×K2×K2 which is a hypercube of dimension three. The
task now is to find the automorphisms of a cube. But it is well known that a
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cube has 24 rotational symmetries and 2 reflectional symmetries. Therefore,
the automorphism group is isormorphic to Aut(Γ(R0) × Γ(R0) × ΓR0)) ∼=
S4 × C2.

Proposition 18. Let R = GR(9, 3)⊕ Z3 , then Aut(Γ(R)× Γ(R)) induces a
cycle graph C4 in which Aut(C4) ∼= D4.

Proof. We note that the most convenient representation for C4 is precisely
the same as that of D4. Thus, any automorphism of C4 must be the set
of symmetries of D4. Conversely, no symmetries of C4 can be automorphism
without being permutation of D4 since graph automorphism must preserve the
original structures of graph. Thus any such automorphism would be necessarily
be an element of D4. It follows that Aut(C4) ∼= D4.
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